ﻻ يوجد ملخص باللغة العربية
We discuss Bogomolnyi equations for general gauge theories (depending on the two Maxwell invariants $F^{mu u} F_{mu u}$ and $tilde F^{mu u} F_{mu u}$) coupled to Higgs scalars. By analysing their supersymmetric extension, we explicitly show why the resulting BPS structure is insensitive to the particular form of the gauge Lagrangian: Maxwell, Born-Infeld or more complicated non-polynomial Lagrangians all satisfy the same Bogomolnyi equations and bounds which are dictated by the underlying supersymmetry algebra.
The requirement of the existence of a holographic c-function for higher derivative theories is a very restrictive one and hence most theories do not possess this property. Here, we show that, when some of the parameters are fixed, the $Dgeq3$ Born-In
We analyze the exact perturbative solution of N=2 Born-Infeld theory which is believed to be defined by Ketovs equation. This equation can be considered as a truncation of an infinite system of coupled differential equations defining Born-Infeld acti
We study the Dirac-Born-Infeld (DBI) action with one linear and one non-linear supersymmetry in the presence of a constant Fayet-Iliopoulos (FI) D-term added explicitly or through a deformation of supersymmetry transformations. The linear supersymmet
We present new models of non-linear electromagnetism which satisfy the Noether-Gaillard-Zumino current conservation and are, therefore, self-dual. The new models differ from the Born-Infeld-type models in that they deform the Maxwell theory starting
We derive new types of $U(1)^n$ Born-Infeld actions based on N=2 special geometry in four dimensions. As in the single vector multiplet (n=1) case, the non--linear actions originate, in a particular limit, from quadratic expressions in the Maxwell fi