ﻻ يوجد ملخص باللغة العربية
Starting from a short range expansion of the inelastic overlap function, capable of describing quite well the elastic pp and $bar{p}p$ scattering data, we obtain extensions to the inelastic channel, through unitarity and an impact parameter approach. Based on geometrical arguments we infer some characteristics of the elementary hadronic process and this allows an excellent description of the inclusive multiplicity distributions in $pp$ and $bar{p}p$ collisions. With this approach we quantitatively correlate the violations of both geometrical and KNO scaling in an analytical way. The physical picture from both channels is that the geometrical evolution of the hadronic constituents is principally reponsible for the energy dependence of the physical quantities rather than the dynamical (elementary) interaction itself.
Using the Quality Factor (QF) method, we analyse the scaling properties of deep-inelastic processes at HERA and fixed target experiments for x<10^{-2}.
We discuss how the main features of the recent LHC data on elastic scattering can be described by a QCD-inspired formalism with a dynamical infrared mass scale. For this purpose new developments on a dynamical gluon mass approach are reported, with e
Coupled-channel dynamics for scattering and production processes in partial-wave amplitudes is discussed from a perspective that emphasizes unitarity and analyticity. We elaborate on several methods that have driven to important results in hadron phy
In this work the process of elastic hadron scattering is discussed. In particular, scattering amplitudes for the various Pomeron models are compared. In addition, differential elastic cross section as a function of the scattered proton transverse mom
We present the result of an empirical model for elastic $pp$ scattering at LHC which indicates that the asymptotic black disk limit ${cal R}=sigel/sigtotrightarrow1/2$ is not yet reached and discuss the implications on classical geometrical scaling b