ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffractive Deep-Inelastic Scattering

150   0   0.0 ( 0 )
 نشر من قبل Stefan Tapprogge
 تاريخ النشر 1996
  مجال البحث
والبحث باللغة English
 تأليف S. Tapprogge




اسأل ChatGPT حول البحث

New results on diffractive deep-inelastic $e p$ scattering at HERA are presented using data taken in 1994 with the H1 detector. The cross section for diffractive deep-inelastic scattering is measured in terms of a diffractive structure function $F_2^{D(3)}(beta,Q^2,xpom)$ over an extended kinematic range. The dependence of $F_2^{D(3)}$ on $xpom$ is found not to depend on $Q^2$, but to depend on $beta$. Therefore the $xpom$ dependence no longer factorizes. The $Q^2$ and $beta$ dependence of $F_2^{D(3)}$ is analyzed after an integration over the dependence on $xpom$. For fixed $beta$ a clear rise with $log Q^2$ is observed, persisting up to high values of $beta$. In terms of the Altarelli-Parisi (DGLAP) QCD evolution equations, these scaling violations give clear indications for a gluon dominated process. Subsequently an attempt is made to quantify the parton content of the diffractive exchange using the DGLAP evolution. At the starting scale a ``leading gluon distribution is found which contributes about $80 %$ of the momentum in the diffractive exchange. Measurements of the hadronic final state (energy flow and production of $D^{*}$ mesons) are found to be consistent with the predictions of a model of deep-inelastic electron pomeron scattering using the information on the parton content obtained.

قيم البحث

اقرأ أيضاً

The diffractive open charm production is computed in perturbative QCD formalism and in the Regge approach. The results are compared with recent data on charm diffractive structure function measured at DESY-HERA. Our results demonstrate that this obse rvable can be useful to discriminate the QCD dynamics.
Production of exclusive dijets in diffractive deep inelastic $e^pm p$ scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb$^{-1}$. The measurement was performed for $gamma^*-p$ centre-of-mass energies i n the range $90 < W < 250$ GeV and for photon virtualities $Q^2 > 25$ GeV$^2$. Energy and transverse-energy flows around the jet axis are presented. The cross section is presented as a function of $beta$ and $phi$, where $beta=x/x_{rm I!P}$, $x$ is the Bjorken variable and $x_{rm I!P}$ is the proton fractional longitudinal momentum loss. The angle $phi$ is defined by the $gamma^*-$dijet plane and the $gamma^*-e^pm$ plane in the rest frame of the diffractive final state. The $phi$ cross section is measured in bins of $beta$. The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.
94 - H1 Collaboration 2017
Measurements of $D^{*}(2010)$ meson production in diffractive deep inelastic scattering $(5<Q^{2}<100~{rm GeV}^{2})$ are presented which are based on HERA data recorded at a centre-of-mass energy $sqrt{s} = 319{rm~GeV}$ with an integrated luminosity of $287$ pb$^{-1}$. The reaction $ep rightarrow eXY$ is studied, where the system $X$, containing at least one $D^{*}(2010)$ meson, is separated from a leading low-mass proton dissociative system $Y$ by a large rapidity gap. The kinematics of $D^{*}$ candidates are reconstructed in the $D^{*}rightarrow K pipi$ decay channel. The measured cross sections compare favourably with next-to-leading order QCD predictions, where charm quarks are produced via boson-gluon fusion. The charm quarks are then independently fragmented to the $D^{*}$ mesons. The calculations rely on the collinear factorisation theorem and are based on diffractive parton densities previously obtained by H1 from fits to inclusive diffractive cross sections. The data are further used to determine the diffractive to inclusive $D^{*}$ production ratio in deep inelastic scattering.
We analyse the newest diffractive deep inelastic scattering data from the DESY collider HERA with the help of dipole models. We find good agreement with the data on the diffractive structure functions provided the diffractive open charm contribution is taken into account. However, the region of large diffractive mass (small values of a parameter beta) needs some refinement with the help of an additional gluon radiation.
274 - Zhiqing Zhang 2014
This contribution covers three recent results on deep-inelastic scattering at HERA: (i) new measurements of the proton longitudinal structure function $F_L$ from H1 and ZEUS experiments, (ii) a dedicated NC cross section measurement from ZEUS in the region of high Bjorken $x$, and (iii) preliminary combination results of all HERA inclusive data published up to now by H1 and ZEUS, taking into account the experimental correlations between measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا