ﻻ يوجد ملخص باللغة العربية
We show, by using Regge calculus, that the entropy of any finite part of a Rindler horizon is, in the semi-classical limit, one quarter of the area of that part. We argue that this result implies that the entropy associated with any horizon of spacetime is, in semi-classical limit, one quarter of its area. As an example, we derive the Bekenstein-Hawking entropy law for the Schwarzschild black hole.
In this paper, we perform a detailed investigation on the various geometrical properties of trapped surfaces and the boundaries of trapped region in general relativity. This treatment extends earlier work on LRS II spacetimes to a general 4 dimension
The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is $Lambda (H) propto H^{n+2}$, is discussed in detail. Specifical
Along this review, we focus on the study of several properties of modified gravity theories, in particular on black-hole solutions and its comparison with those solutions in General Relativity, and on Friedmann-Lemaitre-Robertson-Walker metrics. The
Gibbons and Hawking [Phys. Rev. D 15, 2738 (1977)] have shown that the horizon of de Sitter space emits radiation in the same way as the event horizon of the black hole. But actual cosmological horizons are not event horizons, except in de Sitter spa
We systematically investigate axisymmetric extremal isolated horizons (EIHs) defined by vanishing surface gravity, corresponding to zero temperature. In the first part, using the Newman-Penrose and GHP formalism we derive the most general metric func