ترغب بنشر مسار تعليمي؟ اضغط هنا

Contextual Constraint Modeling in Grid Application Workflows

56   0   0.0 ( 0 )
 نشر من قبل Gregory Edwin Graham
 تاريخ النشر 2005
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف G. E. Graham




اسأل ChatGPT حول البحث

This paper introduces a new mechanism for specifying constraints in distributed workflows. By introducing constraints in a contextual form, it is shown how different people and groups within collaborative communities can cooperatively constrain workflows. A comparison with existing state-of-the-art workflow systems is made. These ideas are explored in practice with an illustrative example from High Energy Physics.



قيم البحث

اقرأ أيضاً

During the first observation run the LIGO collaboration needed to offload some of its most, intense CPU workflows from its dedicated computing sites to opportunistic resources. Open Science Grid enabled LIGO to run PyCbC, RIFT and Bayeswave workflows to seamlessly run in a combination of owned and opportunistic resources. One of the challenges is enabling the workflows to use several heterogeneous resources in a coordinated and effective way.
A hybrid mobile/fixed device cloud that harnesses sensing, computing, communication, and storage capabilities of mobile and fixed devices in the field as well as those of computing and storage servers in remote datacenters is envisioned. Mobile devic e clouds can be harnessed to enable innovative pervasive applications that rely on real-time, in-situ processing of sensor data collected in the field. To support concurrent mobile applications on the device cloud, a robust and secure distributed computing framework, called Maestro, is proposed. The key components of Maestro are (i) a task scheduling mechanism that employs controlled task replication in addition to task reallocation for robustness and (ii) Dedup for task deduplication among concurrent pervasive workflows. An architecture-based solution that relies on task categorization and authorized access to the categories of tasks is proposed for different levels of protection. Experimental evaluation through prototype testbed of Android- and Linux-based mobile devices as well as simulations is performed to demonstrate Maestros capabilities.
Scientific workflows have been used almost universally across scientific domains, and have underpinned some of the most significant discoveries of the past several decades. Many of these workflows have high computational, storage, and/or communicatio n demands, and thus must execute on a wide range of large-scale platforms, from large clouds to upcoming exascale high-performance computing (HPC) platforms. These executions must be managed using some software infrastructure. Due to the popularity of workflows, workflow management systems (WMSs) have been developed to provide abstractions for creating and executing workflows conveniently, efficiently, and portably. While these efforts are all worthwhile, there are now hundreds of independent WMSs, many of which are moribund. As a result, the WMS landscape is segmented and presents significant barriers to entry due to the hundreds of seemingly comparable, yet incompatible, systems that exist. As a result, many teams, small and large, still elect to build their own custom workflow solution rather than adopt, or build upon, existing WMSs. This current state of the WMS landscape negatively impacts workflow users, developers, and researchers. The Workflows Community Summit was held online on January 13, 2021. The overarching goal of the summit was to develop a view of the state of the art and identify crucial research challenges in the workflow community. Prior to the summit, a survey sent to stakeholders in the workflow community (including both developers of WMSs and users of workflows) helped to identify key challenges in this community that were translated into 6 broad themes for the summit, each of them being the object of a focused discussion led by a volunteer member of the community. This report documents and organizes the wealth of information provided by the participants before, during, and after the summit.
It is common practice to partition complex workflows into separate channels in order to speed up their completion times. When this is done within a distributed environment, unavoidable fluctuations make individual realizations depart from the expecte d average gains. We present a method for breaking any complex workflow into several workloads in such a way that once their outputs are joined, their full completion takes less time and exhibit smaller variance than when running in only one channel. We demonstrate the effectiveness of this method in two different scenarios; the optimization of a convex function and the transmission of a large computer file over the Internet.
This paper tries to reduce the effort of learning, deploying, and integrating several frameworks for the development of e-Science applications that combine simulations with High-Performance Data Analytics (HPDA). We propose a way to extend task-based management systems to support continuous input and output data to enable the combination of task-based workflows and dataflows (Hybrid Workflows from now on) using a single programming model. Hence, developers can build complex Data Science workflows with different approaches depending on the requirements. To illustrate the capabilities of Hybrid Workflows, we have built a Distributed Stream Library and a fully functional prototype extending COMPSs, a mature, general-purpose, task-based, parallel programming model. The library can be easily integrated with existing task-based frameworks to provide support for dataflows. Also, it provides a homogeneous, generic, and simple representation of object and file streams in both Java and Python; enabling complex workflows to handle any data type without dealing directly with the streaming back-end.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا