ﻻ يوجد ملخص باللغة العربية
We present new measurements of the thermal conductivity of UPt3 down to very low temperatures (16mK) and under magnetic fields (up to 4 T) which cover all the superconducting phases of UPt3. The measurements in zero field are compared with recent theoretical predictions for the thermal conductivity, which is dominated by impurity states at the lowest temperatures studied. The measurements under magnetic field at low temperatures are surprising since they dont show the expected low field square root dependence. The discontinuity of d kappa/dT at Tc changes drastically when passing from the high field low temperature C phase to the low field high temperature A phase : this is related to the change of the symmetry of the superconducting order parameter when crossing the A - C phase transition.
The order parameter and pairing mechanism for superconductivity in heavy fermion compounds are still poorly understood. Scanning tunneling microscopy and spectroscopy at ultra-low temperatures can yield important information about the superconducting
Relationship between the superconducting gap and the pseudogap has been the subject of controversies. In order to clarify this issue, we have studied the superconducting gap and pseudogap of the high-Tc superconductor La2-xSrxCuO4 (x=0.10, 0.14) by a
We performed AC calorimetry and magnetoresistance measurements under pressure for H || a-axis (easy-magnetization axis) in the novel heavy-fermion superconductor UTe2. Thanks to the thermodynamic information, multiple superconducting phases have been
Recent excperiments (ARPES, Raman) suggest the presence of two distinct energy gaps in high-Tc superconductors (HTSC), exhibiting different doping dependences. Results of a variational cluster approach to the superconducting state of the two-dimensio
To clarify the superconducting gap structure of the spin-triplet superconductor Sr_2RuO_4, the in-plane thermal conductivity has been measured as a function of relative orientations of the thermal flow, the crystal axes, and a magnetic field rotating