ﻻ يوجد ملخص باللغة العربية
We study critical spreading in a surface-modified directed percolation model in which the left- and right-most sites have different occupation probabilities than in the bulk. As we vary the probability for growth at an edge, the critical exponents switch from the compact directed percolation class to ordinary directed percolation. We conclude that the nonuniversality observed in models with multiple absorbing configurations cannot be explained as a simple surface effect.
These lectures provide an introduction to the directed percolation and directed animals problems, from a physicists point of view. The probabilistic cellular automaton formulation of directed percolation is introduced. The planar duality of the diode
A simple one-dimensional microscopic model of the depinning transition of an interface from an attractive hard wall is introduced and investigated. Upon varying a control parameter, the critical behaviour observed along the transition line changes fr
The self-consistent probabilistic approach has proven itself powerful in studying the percolation behavior of interdependent or multiplex networks without tracking the percolation process through each cascading step. In order to understand how direct
We study a hierarchy of directed percolation (DP) processes for particle species A, B, ..., unidirectionally coupled via the reactions A -> B, ... When the DP critical points at all levels coincide, multicritical behavior emerges, with density expone
We introduce a stochastic sandpile model where finite drive and dissipation are coupled to the activity field. The absorbing phase transition here, as expected, belongs to the directed percolation (DP) universality class. We focus on the small drive