ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph Partitioning Induced Phase Transitions

169   0   0.0 ( 0 )
 نشر من قبل Gerald Paul
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the percolation properties of graph partitioning on random regular graphs with N vertices of degree $k$. Optimal graph partitioning is directly related to optimal attack and immunization of complex networks. We find that for any partitioning process (even if non-optimal) that partitions the graph into equal sized connected components (clusters), the system undergoes a percolation phase transition at $f=f_c=1-2/k$ where $f$ is the fraction of edges removed to partition the graph. For optimal partitioning, at the percolation threshold, we find $S sim N^{0.4}$ where $S$ is the size of the clusters and $ellsim N^{0.25}$ where $ell$ is their diameter. Additionally, we find that $S$ undergoes multiple non-percolation transitions for $f<f_c$.



قيم البحث

اقرأ أيضاً

We numerically investigate the structure of many-body wave functions of 1D random quantum circuits with local measurements employing the participation entropies. The leading term in system size dependence of participation entropies indicates a multif ractal scaling of the wave-functions at any non-zero measurement rate. The sub-leading term contains universal information about measurement--induced phase transitions and plays the role of an order parameter, being non-zero in the error-correcting phase and vanishing in the quantum Zeno phase. We provide an analytical interpretation of this behavior expressing the participation entropy in terms of partition functions of classical statistical models in 2D.
149 - J. A. Hoyos 2008
The effects of quenched disorder on nonequilibrium phase transitions in the directed percolation universality class are revisited. Using a strong-disorder energy-space renormalization group, it is shown that for any amount of disorder the critical be havior is controlled by an infinite-randomness fixed point in the universality class of the random transverse-field Ising models. The experimental relevance of our results are discussed.
We explore a class of random tensor network models with ``stabilizer local tensors which we name Random Stabilizer Tensor Networks (RSTNs). For RSTNs defined on a two-dimensional square lattice, we perform extensive numerical studies of entanglement phase transitions between volume-law and area-law entangled phases of the one-dimensional boundary states. These transitions occur when either (a) the bond dimension $D$ of the constituent tensors is varied, or (b) the tensor network is subject to random breaking of bulk bonds, implemented by forced measurements. In the absence of broken bonds, we find that the RSTN supports a volume-law entangled boundary state with bond dimension $Dgeq3$ where $D$ is a prime number, and an area-law entangled boundary state for $D=2$. Upon breaking bonds at random in the bulk with probability $p$, there exists a critical measurement rate $p_c$ for each $Dgeq 3$ above which the boundary state becomes area-law entangled. To explore the conformal invariance at these entanglement transitions for different prime $D$, we consider tensor networks on a finite rectangular geometry with a variety of boundary conditions, and extract universal operator scaling dimensions via extensive numerical calculations of the entanglement entropy, mutual information and mutual negativity at their respective critical points. Our results at large $D$ approach known universal data of percolation conformal field theory, while showing clear discrepancies at smaller $D$, suggesting a distinct entanglement transition universality class for each prime $D$. We further study universal entanglement properties in the volume-law phase and demonstrate quantitative agreement with the recently proposed description in terms of a directed polymer in a random environment.
The Potts model is one of the most popular spin models of statistical physics. The prevailing majority of work done so far corresponds to the lattice version of the model. However, many natural or man-made systems are much better described by the top ology of a network. We consider the q-state Potts model on an uncorrelated scale-free network for which the node-degree distribution manifests a power-law decay governed by the exponent lambda. We work within the mean-field approximation, since for systems on random uncorrelated scale-free networks this method is known to often give asymptotically exact results. Depending on particular values of q and lambda one observes either a first-order or a second-order phase transition or the system is ordered at any finite temperature. In a case study, we consider the limit q=1 (percolation) and find a correspondence between the magnetic exponents and those describing percolation on a scale-free network. Interestingly, logarithmic corrections to scaling appear at lambda=4 in this case.
We investigate dynamical quantum phase transitions in disordered quantum many-body models that can support many-body localized phases. Employing $l$-bits formalism, we lay out the conditions for which singularities indicative of the transitions appea r in the context of many-body localization. Using the combination of the mapping onto $l$-bits and exact diagonalization results, we explicitly demonstrate the presence of these singularities for a candidate model that features many-body localization. Our work paves the way for understanding dynamical quantum phase transitions in the context of many-body localization, and elucidating whether different phases of the latter can be detected from analyzing the former. The results presented are experimentally accessible with state-of-the-art ultracold-atom and ion-trap setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا