ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin switch and spin amplifier: magnetic bipolar transistor in the saturation regime

183   0   0.0 ( 0 )
 نشر من قبل Jaroslav Fabian
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that magnetic bipolar transistors (MBT) can amplify currents even in the saturation regime, in which both the emitter-base and collector-base junctions are forward biased. The collector current and the current gain can change sign as they depend on the relative orientation of the equilibrium spin in the base and on the nonequilibrium spin in the emitter and collector. The predicted phenomena should be useful for electrical detection of nonequilibrium spins in semiconductors, as well as for magnetic control of current amplification and for current switching.


قيم البحث

اقرأ أيضاً

We propose a spin transistor using only non-magnetic materials that exploits the characteristics of bulk inversion asymmetry (BIA) in (110) symmetric quantum wells. We show that extremely large spin splittings due to BIA are possible in (110) InAs/Ga Sb/AlSb heterostructures, which together with the enhanced spin decay times in (110) quantum wells demonstrates the potential for exploitation of BIA effects in semiconductor spintronics devices. Spin injection and detection is achieved using spin-dependent resonant interband tunneling and spin transistor action is realized through control of the electron spin lifetime in an InAs lateral transport channel using an applied electric field (Rashba effect). This device may also be used as a spin valve, or a magnetic field sensor. The electronic structure and spin relaxation times for the spin transistor proposed here are calculated using a nonperturbative 14-band k.p nanostructure model.
127 - M. Guigue , R. Golub , G. Pignol 2014
We present a theoretical analysis of spin relaxation, for a polarized gas of spin 1/2 particles undergoing restricted adiabatic diffusive motion within a container of arbitrary shape, due to magnetic field inhomogeneities of arbitrary form.
We show that a Spin Field Effect Transistor, realized with a semiconductor quantum wire channel sandwiched between half-metallic ferromagnetic contacts, can have Fano resonances in the transmission spectrum. These resonances appear because the ferrom agnets are half-metallic, so that the Fermi level can be placed above the majority but below the minority spin band. In that case, the majority spins will be propagating, but the minority spins will be evanescent. At low temperatures, the Fano resonances can be exploited to implement a digital binary switch that can be turned on or off with a very small gate voltage swing of few tens of microvolts, leading to extremely small dynamic power dissipation during switching. An array of 500,000 x 500,000 such transistors can detect ultrasmall changes in a magnetic field with a sensitivity of 1 femto-Tesla/sqrt{Hz}, if each transistor is biased near a Fano resonance.
One of the most remarkable examples of emergent quasi-particles, is that of the fractionalization of magnetic dipoles in the low energy configurations of materials known as spin ice, into free and unconfined magnetic monopoles interacting via Coulomb s 1/r law [Castelnovo et. al., Nature, 451, 42-45 (2008)]. Recent experiments have shown that a Coulomb gas of magnetic charges really does exist at low temperature in these materials and this discovery provides a new perspective on otherwise largely inaccessible phenomenology. In this paper, after a review of the different spin ice models, we present detailed results describing the diffusive dynamics of monopole particles starting both from the dipolar spin ice model and directly from a Coulomb gas within the grand canonical ensemble. The diffusive quasi-particle dynamics of real spin ice materials within quantum tunneling regime is modeled with Metropolis dynamics, with the particles constrained to move along an underlying network of oriented paths, which are classical analogues of the Dirac strings connecting pairs of Dirac monopoles.
129 - J. Fabian , I. Zutic 2004
The equivalent electrical circuit of the Ebers-Moll type is introduced for magnetic bipolar transistors. In addition to conventional diodes and current sources, the new circuit comprises two novel elements due to spin-charge coupling. A classificatio n scheme of the operating modes of magnetic bipolar transistors in the low bias regime is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا