ترغب بنشر مسار تعليمي؟ اضغط هنا

Superparamagnetic relaxation in Cu_{x}Fe_{3-x}O_{4} (x=0.5 and x=1) nanoparticles

316   0   0.0 ( 0 )
 نشر من قبل Damir Pajic
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The scope of this article is to report very detailed results of the measurements of magnetic relaxation phenomena in the new Cu$_{0.5}$Fe$_{2.5}$O$_{4}$ nanoparticles and known CuFe$_{2}$O$_{4}$ nanoparticles. The size of synthesized particles is (6.5$pm $1.5)nm. Both samples show the superparamagnetic behaviour, with the well-defined phenomena of blocking of magnetic moment. This includes the splitting of zero-field-cooled and field-cooled magnetic moment curves, dynamical hysteresis, slow quasi-logarithmic relaxation of magnetic moment below blocking temperature. The scaling of the magnetic moment relaxation data at different temperatures confirms the applicability of the simple thermal relaxation model. The two copper-ferrites with similar structures show significantly different magnetic anisotropy density and other magnetic properties. Investigated systems exhibit the consistency of all obtained results.

قيم البحث

اقرأ أيضاً

We use a mapping of the multiband Hubbard model for $CuO_{3}$ chains in $RBa_{2}Cu_{3}0_{6+x}$ (R=Y or a rare earth) onto a $t-J$ model and the description of the charge dynamics of the latter in terms pf s spinless model, to study the electronic str ucture of the chains. We briefly review results for the optical conductivity and we calculate the quantum phase diagram of quarter filled chains including Coulomb repulsion up to that between next-nearest-neighbor $Cu$ atoms $V_{2}$, using the resulting effective Hamiltonian, mapped onto an XXZ chain, and the method of crossing of excitation spectra. The method gives accurate results for the boundaries of the metallic phase in this case. The inclusion of $V_{2}$ greatly enhances the region of metallic behavior of the chains.
122 - Z.A. Ren , G.C. Che , Y.M. Ni 2003
In this paper, the $Fe$-containing superconductors $Fe_{0.5}Cu_{0.5}Ba_2YCu_2O_{7+delta}$, $Fe_{0.5}Cu_{0.5}BaSrYCu_2O_{7+delta}$ and $Fe_{0.5}Cu_{0.5}Sr_2YCu_2O_{7+delta}$ were successfully prepared by common solid-state reaction followed with a pro cedure of high pressure synthesis. The structural change and superconducting properties in $(Fe_xCu_{1-x})BaSrYCu_2O_{7+delta}$ ($x$ = 0 $sim$ 1.0) systems were also investigated. Annealing experiments indicate that the occurrence of superconductivity in $Fe_{0.5}Cu_{0.5}(Ba_{1-x}Sr_{x})_2YCu_2O_{7+delta}$ ($x$ = 0, 0.5 and 1) systems is mainly induced by the procedure of high pressure synthesis, which causes the increase of oxygen content and the redistribution of $Fe$ atoms between $Cu(1)$ and $Cu(2)$ sites, but not from possible secondary phase of $YBa_2Cu_3O_{7-delta}$, $YBaSrCu_3O_{7-delta}$ or $YSr_2Cu_3O_{7-delta}$ superconductors.
$Co$-doping of $Fe_{3}O_{4}$ magnetic nanoparticles is an effective way to tailor their magnetic properties. When considering the two extreme cases of the $Co_{x}Fe_{3-x}O_{4}$ series, i.e. the $x=0$ and $x=1$ values, one finds that the system evolve s from a negative cubic-anisotropy energy constant, $K_{C}^{-}<0$, to a positive one, $K_{C}^{+}>0$. Thus, what happens for intermediate $x$-compositions? In this work we present a very simple phenomenological model for the anisotropy, under the textit{macrospin} approximation, in which the resultant anisotropy is just directly proportional to the amount of $Co$. First, we perform a detailed analysis on a rather ideal system in which the extreme values have the same magnitude (i.e. $|K_{C}^{-}|=|K_{C}^{+}|$) and then we focus on the real $Co_{x}Fe_{3-x}O_{4}$ system, for which $|K_{C}^{+}|sim 18|K_{C}^{-}|$. Remarkably, the approach reproduces rather well the experimental values of the heating performance of $Co_{x}Fe_{3-x}O_{4}$ nanoparticles, suggesting that our simple approach may in fact be a good representation of the real situation. This gives rise to an intriguing related possibility arises: a $Co$-doping composition should exist for which the effective anisotropy tends to zero, estimated here as 0.05.
118 - T. Stein , G. A. Levin , 1999
We report transport and magnetic relaxation measurements in the mixed state of strongly underdoped Y_{1-x}Pr_{x}Ba_{2}Cu_{3}O_{7} crystals. A transition from thermally activated flux creep to temperature independent quantum flux creep is observed in both transport and magnetic relaxation at temperatures T * 5 K. Flux transformer measurements indicate that the crossover to quantum creep is preceded by a coupling transition. Based on these observations we argue that below the coupling transition the current is confined within a very narrow layer beneath the current contacts.
Nanocrystalline Al-doped nickel ferrite powders have been synthesized by sol-gel auto-ignition method and the effect of non-magnetic aluminum content on the structural and magnetic properties has been studied. The X-ray diffraction (XRD) revealed tha t the powders obtained are single phase with inverse spinel structure. The calculated grain sizes from XRD data have been verified using transmission electron microscopy (TEM). TEM photographs show that the powders consist of nanometer-sized grains. It was observed that the characteristic grain size decreases from 29 to 6 nm as the non-magnetic Al content increases, which was attributed to the influence of non-magnetic Al concentration on the grain size. Magnetic hysteresis loops were measured at room temperature with a maximum applied magnetic field of 1T. As aluminum content increases, the measured magnetic hysteresis curves become more and more narrow and the saturation magnetization and remanent magnetization both decreased. The reduction of agnetization compared to bulk is a consequence of spin non-collinearity. Further reduction of magnetization with increase of aluminum content is caused by non-magnetic Al^{3+} ions and weakened interaction between sublattices. This, as well as the decrease in hysteresis was understood in terms of the decrease in particle size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا