ﻻ يوجد ملخص باللغة العربية
We propose new polymer models for Monte Carlo simulation and apply them to a polymer chain confined in a relatively thin box which has both curved and flat sides, and show that either an ideal or an excluded-volume chain spends more time in the curved region than in the flat region. The ratio of the probability of finding a chain in the curved region and in flat region increases exponentially with increasing chain length. The results for ideal chains are quantitatively consistent with a previously published theory. We find that the same effect appears with excluded-volume chains and a similar scaling relation can be applied to them up to a certain length of the polymer.
Using a recently developed bead-spring model for semiflexible polymers that takes into account their natural extensibility, we report an efficient algorithm to simulate the dynamics for polymers like double-stranded DNA (dsDNA) in the absence of hydr
We present results for a lattice model of bio-polymers where the type of $beta$-sheet formation can be controlled by different types of hydrogen bonds depending on the relative orientation of close segments of the polymer. Tuning these different inte
Extensive Monte Carlo results are presented for a lattice model of a bottle-brush polymer under good solvent or Theta solvent conditions. Varying the side chain length, backbone length, and the grafting density for a rigid straight backbone, both rad
A coarse-grained simulation model eliminates microscopic degrees of freedom and represents a polymer by a simplified structure. A priori, two classes of coarse-grained models may be distinguished: those which are designed for a specific polymer and r
We present the results of analytic calculations and numerical simulations of the behaviour of a new class of chain molecules which we call thick polymers. The concept of the thickness of such a polymer, viewed as a tube, is encapsulated by a special