ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant Tunnelling through InAs Quantum Dots in Tilted Magnetic Fields: Experimental Determination of the g-factor Anisotropy

91   0   0.0 ( 0 )
 نشر من قبل Zeitler
 تاريخ النشر 2000
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have determined the Lande factor g* in self-organized InAs quantum dots using resonant-tunnelling experiments. With the magnetic field applied parallel to the growth direction z we find g*_parallel = 0.75 for the specific dot investigated. When the magnetic field is tilted away by theta from the growth axis, g* gradually increases up to a value g*_perp = 0.92 when B perp z. Its angular dependence is found to follow the phenomenological behaviour g* (theta) = sqrt{(g*_parallel cos(theta)^2 + (g*_perp sin(theta)^2}.



قيم البحث

اقرأ أيضاً

Three-dimensional anisotropy of the Lande g-factor and its electrical modulation are studied for single uncapped InAs self-assembled quantum dots (QDs). The g-factor is evaluated from measurement of inelastic cotunneling via Zeeman substates in the Q D for various magnetic field directions. We find that the value and anisotropy of the g-factor depends on the type of orbital state which arises from the three-dimensional confinement anisotropy of the QD potential. Furthermore, the g-factor and its anisotropy are electrically tuned by a side-gate which modulates the confining potential.
We study the effects of magnetic and electric fields on the g-factors of spins confined in a two-electron InAs nanowire double quantum dot. Spin sensitive measurements are performed by monitoring the leakage current in the Pauli blockade regime. Rota tions of single spins are driven using electric-dipole spin resonance. The g-factors are extracted from the spin resonance condition as a function of the magnetic field direction, allowing determination of the full g-tensor. Electric and magnetic field tuning can be used to maximize the g-factor difference and in some cases altogether quench the EDSR response, allowing selective single spin control.
135 - D. Kim , W. Sheng , P.J. Poole 2008
Photoluminescence data from single, self-assembled InAs/InP quantum dots in magnetic fields up to 7 T are presented. Exciton g-factors are obtained for dots of varying height, corresponding to ground state emission energies ranging from 780 meV to 11 00 meV. A monotonic increase of the g-factor from -2 to +1.2 is observed as the dot height decreases. The trend is well reproduced by sp3 tight binding calculations, which show that the hole g-factor is sensitive to confinement effects through orbital angular momentum mixing between the light-hole and heavy-hole valence bands. We demonstrate tunability of the exciton g-factor by manipulating the quantum dot dimensions using pyramidal InP nanotemplates.
We study the g-factor of discrete electron states in InAs nanowire based quantum dots. The g values are determined from the magnetic field splitting of the zero bias anomaly due to the spin 1/2-Kondo effect. Unlike to previous studies based on 2DEG q uantum dots, the g-factors of neighboring electron states show a surprisingly large fluctuation: g can scatter between 2 and 18. Furthermore electric gate tunability of the g-factor is demonstrated.
129 - Jie Sun , Ruoyuan Li , Chang Zhao 2007
Molecular beam epitaxy is employed to manufacture self-assembled InAs/AlAs quantum-dot resonant tunneling diodes. Resonant tunneling current is superimposed on the thermal current, and they make up the total electron transport in devices. Steps in cu rrent-voltage characteristics and peaks in capacitance-voltage characteristics are explained as electron resonant tunneling via quantum dots at 77K or 300K, and this is the first time that resonant tunneling is observed at room temperature in III-V quantum-dot materials. Hysteresis loops in the curves are attributed to hot electron injection/emission process of quantum dots, which indicates the concomitant charging/discharging effect.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا