ﻻ يوجد ملخص باللغة العربية
We present the first reliable calculation of the collective mode structure of a strongly coupled electronic bilayer. The calculation is based on a classical model through the $3^{rd}$ frequency-moment-sum-rule preserving Quasi Localized Charge Approximation, using the recently calculated Hypernetted Chain pair correlation functions. The spectrum shows an energy gap at $k=0$ and the absence of a previously conjectured dynamical instability.
The concept of Fermi liquid lays a solid cornerstone to the understanding of electronic correlations in quantum matter. This ordered many-body state rigorously organizes electrons at zero temperature in progressively higher momentum states, up to the
We show that a two-dimensional (2D) isotropic Fermi liquid harbors two new types of collective modes, driven by quantum fluctuations, in addition to conventional zero sound: hidden and mirage modes. The hidden modes occur for relatively weak attracti
In this work we consider the hydrodynamic behavior of a coupled electron-phonon fluid, focusing on electronic transport under the conditions of strong phonon drag. This regime occurs when the rate of phonon equilibration due to e.g. umklapp scatterin
Semi-holographic models of non-Fermi liquids have been shown to have generically stable generalised quasi-particles on the Fermi surface. Although these excitations are broad and exhibit particle-hole asymmetry, they were argued to be stable from int
A generalized hydrodynamical model has been used to study low frequency modes in a strongly coupled, cold, magnetized dusty plasma. Such plasmas exhibit elastic properties due to strong correlations among dust particles and the tensile stresses impar