ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Spherical Harmonic Analysis: a quick algorithm for generating and/or inverting full sky, high resolution CMB Anisotropy maps

34   0   0.0 ( 0 )
 نشر من قبل Paolo Natoli
 تاريخ النشر 1997
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a fast algorithm for generating full sky, high resolution ($sim 5$) simulations of the CMB anisotropy pattern. We also discuss the inverse problem, that of evaluating from such a map the full set of $a_{ell m}$s and the spectral coefficients $C_ell$. We show that using an Equidistant Cylindrical Projection of the sky substantially speeds up the calculations. Thus, generating and/or inverting a full sky, high resolution map can be easily achieved with present day computer technology.

قيم البحث

اقرأ أيضاً

We investigate the properties of the (complex) coefficients obtained in a spherical harmonic representation of temperature maps of the cosmic microwave background (CMB). We study the effect of the coefficient phase only, as well as the combined effec ts of phase and amplitude. The method used to check for anomalies is to construct a ``random walk trajectory in the complex plane where the step length and direction are given by the amplitude and phase (respectively) of the harmonic coefficient. If the fluctuations comprise a homogeneous and isotropic Gaussian random field on the sky, the path so obtained should be a classical ``Rayleigh flight with very well known statistical properties. We illustrate the use of this random-walk representation by using the net walk length as a test statistic, and apply the method to the coefficients obtained from a Wilkinson Microwave Anisotropy Probe (WMAP) preliminary sky temperature map.
Any isotropy violating phenomena on cosmic microwave background (CMB) induces off-diagonal correlations in the two-point function. These correlations themselves can be used to estimate the underlying anisotropic signals. Masking due to residual foreg rounds, or availability of partial sky due to survey limitation, are unavoidable circumstances in CMB studies. But, masking induces additional correlations, and thus complicates the recovery of such signals. In this work, we discuss a procedure based on bipolar spherical harmonic (BipoSH) formalism to comprehensively addresses any spurious correlations induced by masking and successfully recover hidden signals of anisotropy in observed CMB maps. This method is generic, and can be applied to recover a variety of isotropy violating phenomena. Here, we illustrate the procedure by recovering the subtle Doppler boost signal from simulated boosted CMB skies, which has become possible with the unprecedented full-sky sensitivity of PLANCK probe.
We discuss Spherical Needlets and their properties. Needlets are a form of spherical wavelets which do not rely on any kind of tangent plane approximation and enjoy good localization properties in both pixel and harmonic space; moreover needlets coef ficients are asymptotically uncorrelated at any fixed angular distance, which makes their use in statistical procedures very promising. In view of these properties, we believe needlets may turn out to be especially useful in the analysis of Cosmic Microwave Background (CMB) data on the incomplete sky, as well as of other cosmological observations. As a final advantage, we stress that the implementation of needlets is computationally very convenient and may rely completely on standard data analysis packages such as HEALPix.
A new scheme of sky pixelization is developed for CMB maps. The scheme is based on the Gauss--Legendre polynomials zeros and allows one to create strict orthogonal expansion of the map. A corresponding code has been implemented and comparison with other methods has been done.
A detection or nondetection of primordial non-Gaussianity by using the cosmic microwave background radiation (CMB) offers a way of discriminating inflationary scenarios and testing alternative models of the early universe. This has motivated the cons iderable effort that has recently gone into the study of theoretical features of primordial non-Gaussianity and its detection in CMB data. Among such attempts to detect non-Gaussianity, there is a procedure that is based upon two indicators constructed from the skewness and kurtosis of large-angle patches of CMB maps, which have been proposed and used to study deviation from Gaussianity in the WMAP data. Simulated CMB maps equipped with realistic primordial non-Gaussianity are essential tools to test the viability of non-Gaussian indicators in practice, and also to understand the effect of systematics, foregrounds and other contaminants. In this work we extend and complement the results of our previous works by performing an analysis of non-Gaussianity of the high-angular resolution simulated CMB temperature maps endowed with non-Gaussianity of the local type, for which the level of non-Gaussianity is characterized by the dimensionless parameter $f_{rm NL}^{rm local}$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا