ترغب بنشر مسار تعليمي؟ اضغط هنا

IR and UV Galaxies at z=0.6 -- Evolution of Dust Attenuation and Stellar Mass as Revealed by SWIRE and GALEX

37   0   0.0 ( 0 )
 نشر من قبل C. Kevin Xu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study dust attenuation and stellar mass of $rm zsim 0.6$ star-forming galaxies using new SWIRE observations in IR and GALEX observations in UV. Two samples are selected from the SWIRE and GALEX source catalogs in the SWIRE/GALEX field ELAIS-N1-00 ($Omega = 0.8$ deg$^2$). The UV selected sample has 600 galaxies with photometric redshift (hereafter photo-z) $0.5 leq z leq 0.7$ and NUV$leq 23.5$ (corresponding to $rm L_{FUV} geq 10^{9.6} L_sun$). The IR selected sample contains 430 galaxies with $f_{24mu m} geq 0.2$ mJy ($rm L_{dust} geq 10^{10.8} L_sun$) in the same photo-z range. It is found that the mean $rm L_{dust}/L_{FUV}$ ratios of the z=0.6 UV galaxies are consistent with that of their z=0 counterparts of the same $rm L_{FUV}$. For IR galaxies, the mean $rm L_{dust}/L_{FUV}$ ratios of the z=0.6 LIRGs ($rm L_{dust} sim 10^{11} L_sun$) are about a factor of 2 lower than local LIRGs, whereas z=0.6 ULIRGs ($rm L_{dust} sim 10^{12} L_sun$) have the same mean $rm L_{dust}/L_{FUV}$ ratios as their local counterparts. This is consistent with the hypothesis that the dominant component of LIRG population has changed from large, gas rich spirals at z$>0.5$ to major-mergers at z=0. The stellar mass of z=0.6 UV galaxies of $rm L_{FUV} leq 10^{10.2} L_sun$ is about a factor 2 less than their local counterparts of the same luminosity, indicating growth of these galaxies. The mass of z=0.6 UV lunmous galaxies (UVLGs: $rm L_{FUV} > 10^{10.2} L_sun$) and IR selected galaxies, which are nearly exclusively LIRGs and ULIRGs, is the same as their local counterparts.


قيم البحث

اقرأ أيضاً

We study the ultraviolet to far-infrared (hereafter UV-to-IR) SEDs of a sample of intermediate redshift (0.2 < z < 0.7) UV-selected galaxies from the ELAIS-N1 and ELAIS-N2 fields by fitting a multi-wavelength dataset to a library of GRASIL templates. Star formation related properties of the galaxies are derived from the library of models by using the Bayesian statistics. We find a decreasing presence of galaxies with low attenuation and low total luminosity as redshift decreases, which does not hold for high total luminosity galaxies. In addition the dust attenuation of low mass galaxies increases as redshift decreases, and this trend seems to disappear for galaxies with M* > 10^11 M_sun. This result is consistent with a mass dependent evolution of the dust to gas ratio, which could be driven by a mass dependent efficiency of star formation in star forming galaxies. The specific star formation rates (SSFR) decrease with increasing stellar mass at all redshifts, and for a given stellar mass the SSFR decreases with decreasing redshift. The differences in the slope of the M*--SSFR relation found between this work and others at similar redshift could be explained by the adopted selection criteria of the samples which, for a UV selected sample, favours blue, star forming galaxies.
271 - V. Buat , M. Boquien , K. Malek 2018
Dust attenuation shapes the spectral energy distribution of galaxies. It is particularly true for dusty galaxies in which stars experience a heavy attenuation. The combination of UV-to-IR photometry with the spectroscopic measurement of the H$alpha$ recombination line helps to quantify dust attenuation of the whole stellar population and its wavelength dependence. We selected an IR complete sample of galaxies in the COSMOS 3D-HST CANDELS field detected with the Herschel satellite with a signal to noise ratio larger than five. Optical to NIR photometry is available as well as NIR spectroscopy for each source. We reduced the sample to the redshift range $0.6 < z < 1.6$ to include the H$alpha$ line in the G141 grism spectra. We have used a new version of the CIGALE code to fit simultaneously the continuum and H$alpha$ line emission of the 34 selected galaxies. Using flexible attenuation laws with free parameters, we are able to measure the shape of the attenuation curve for each galaxy as well as the amount of attenuation of each stellar population, the former being in general steeper than the starburst law in the UV-optical with a large variation of the slope among galaxies. The attenuation of young stars or nebular continuum is found on average about twice the attenuation affecting older stars, again with a large variation. Our model with power-laws, based on a modification of the Charlot and Fall recipe, gives results in better agreement with the radiative transfer models than the global modification of the slope of the Calzetti law.
We build a set of composite galaxy SEDs by de-redshifting and scaling multi-wavelength photometry from galaxies in the ZFOURGE survey, covering the CDFS, COSMOS, and UDS fields. From a sample of ~4000 K_s-band selected galaxies, we define 38 composit e galaxy SEDs that yield continuous low-resolution spectra (R~45) over the rest-frame range 0.1-4 um. Additionally, we include far infrared photometry from the Spitzer Space Telescope and the Herschel Space Observatory to characterize the infrared properties of our diverse set of composite SEDs. From these composite SEDs we analyze the rest-frame UVJ colors, as well as the ratio of IR to UV light (IRX) and the UV slope ($beta$) in the IRX$-beta$ dust relation at 1<z<3. Blue star-forming composite SEDs show IRX and $beta$ values consistent with local relations; dusty star-forming galaxies have considerable scatter, as found for local IR bright sources, but on average appear bluer than expected for their IR fluxes. We measure a tight linear relation between rest-frame UVJ colors and dust attenuation for star-forming composites, providing a direct method for estimating dust content from either (U-V) or (V-J) rest-frame colors for star-forming galaxies at intermediate redshifts.
We derive the mean wavelength dependence of stellar attenuation in a sample of 239 high redshift (1.90 < z < 2.35) galaxies selected via Hubble Space Telescope (HST) WFC3 IR grism observations of their rest-frame optical emission lines. Our analysis indicates that the average reddening law follows a form similar to that derived by Calzetti et al. for local starburst galaxies. However, over the mass range 7.2 < log M/Msolar < 10.2, the slope of the attenuation law in the UV is shallower than that seen locally, and the UV slope steepens as the mass increases. These trends are in qualitative agreement with Kriek & Conroy, who found that the wavelength dependence of attenuation varies with galaxy spectral type. However, we find no evidence of an extinction bump at 2175 A in any of the three stellar mass bins, or in the sample as a whole. We quantify the relation between the attenuation curve and stellar mass and discuss its implications.
Using new homogeneous LFs in the FUV and in the FIR Herschel/PEP and Herschel/HerMES, we study the evolution of the dust attenuation with redshift. With this information in hand, we are able to estimate the redshift evolution of the total (FUV + FIR) star formation rate density SFRD_TOT. By integrating SFRD_TOT, we follow the mass building and analyze the redshift evolution of the stellar mass density (SMD). This letter aims at providing a complete view of star formation from the local universe to z = 4 and, using assumptions on earlier star formation history, compares this evolution to what was known before in an attempt to draw a homogeneous picture of the global evolution of star formation in galaxies. The main conclusions of this letter are: 1) the dust attenuation A_FUV is found to increase from z = 0 to z sim 1.2 and then starts to decrease up to our last data point at z = 3.6; 2) the estimated SFRD confirms published results up to z = 2. At z > 2, we observe either a plateau or a small increase up to z = 3 and then a likely decrease up to z = 3.6; 3) the peak of A_FUV is delayed with respect to the plateau of SFRD_TOT and a likely origin might be found in the evolution of the bright ends of the FUV and FIR LFs; 4) using assumptions (namely exponential rise and linear rise with time) for the evolution of the star formation density from z = 3.6 to z_form = 10, we integrate SFRD_TOT and find a good agreement with the published SMDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا