ترغب بنشر مسار تعليمي؟ اضغط هنا

0.5 Mpc-scale extended X-ray emission in 4C 23.56

123   0   0.0 ( 0 )
 نشر من قبل Olivia Johnson
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an XMM-Newton observation of the radio galaxy 4C 23.56 at z=2.48 which reveals extended X-ray emission coincident with the radio lobes spanning ~0.5 Mpc. These are the largest X-ray-bright lobes known at z>2. Under the assumption that these features result from inverse-Compton scattering of cosmic microwave background photons by relativistic electrons in the radio source lobes, the measured luminosity of L_0.5-8 keV=7.5x10^44 erg s^-1 implies a minimum energy stored within the lobes of ~10^59 erg. We discuss the potential of the large-scale radio/X-ray lobes to influence evolution of the host galaxy and proto-cluster environment at high redshift.


قيم البحث

اقرأ أيضاً

147 - C. A. Scharf 2003
We present sensitive, high-resolution, X-ray imaging from Chandra of the high-redshift radio galaxy 4C 41.17 (z=3.8). Our 150-ks Chandra exposure detects strong X-ray emission from a point source coincident with the nucleus of the radio galaxy. In ad dition we identify extended X-ray emission with a luminosity ~1e45 erg/s covering a 100kpc (15) diameter region around the radio galaxy. The extended X-ray emission follows the general distribution of radio emission in the radio lobes of this source, and the distribution of a giant Lyman-alpha emission line halo, while the spectrum of the X-ray emission is non-thermal and has a power law index consistent with that of the radio synchrotron. We conclude that the X-ray emission is most likely Inverse-Compton scattering of far-infrared photons from a relativistic electron population probably associated with past and current activity from the central object. Assuming an equipartition magnetic field the CMB energy density at z=3.8 can only account for at most 40% of the Inverse-Compton emission. Published submillimeter maps of 4C 41.17 have detected an apparently extended and extremely luminous far-infrared emission around the radio galaxy. We demonstrate that this photon component and its spatial distribution, in combination with the CMB can reproduce the observed X-ray luminosity. We propose that photo-ionization by these Inverse-Compton X-ray photons plays a significant role in this system, and provides a new physical feedback mechanism to preferentially affect the gas within the most massive halos at high redshift. This is the highest redshift example of extended X-ray emission around a radio galaxy currently known. (Abridged)
We report on deep Chandra X-ray Telescope imaging observations of 4C 63.20, one of the few known radio galaxies at z>3.5. The X-ray counterpart is resolved into a core plus two off-nuclear sources that (combined) account for close to 30% of the total X-ray flux. Their morphology and orientation are consistent with a diffuse, lobe-like nature, albeit compact hotspots cannot be ruled out. The broadband spectral energy distribution of 4C 63.20 can be reproduced with a jet model where the majority of the radio flux can be ascribed to synchrotron emission from the hotspots, whereas the (non-nuclear) X-ray emission is produced via Inverse Compton (IC) off of Cosmic Microwave Background (CMB) photons within the extended lobes. This scenario is broadly consistent with the expectation from highly magnetized lobes in a hotter CMB, and supports the view that IC/CMB may quench less extreme radio lobes at high redshifts.
71 - E. Belsole 2005
Active galaxies are the most powerful engines in the Universe for converting gravitational energy into radiation, and their study at all epochs of evolution is therefore important. Powerful radio-loud quasars and radio galaxies have the added advanta ge that, since their radio jets need X-ray-emitting gas as a medium in which to propagate, the sources can be used as cosmological probes to trace significant atmospheres at high redshift. The radio emission can be used as a measure of source orientation, and sensitive X-ray measurements, especially when used in combination with multi-wavelength data, can be used to derive important results on the physical structures on a range of sizes from the cores to the large-scale components. In this paper we present new results on a significant sample of powerful radio galaxies and quasars at z > 0.5, drawn from the 3CRR catalogue and selected to sample a full range of source orientation. Using high-quality observations from XMM-Newton and Chandra, we discuss the X-ray properties of the cores, jets, lobes and cluster gas, and, through the incorporation of multi-wavelength data, draw conclusions about the nature of the emission from the different components.
170 - Andrea Cimatti 1998
We present the results of deep spectropolarimetry of two powerful radio galaxies at $zsim2.5$ (4C 00.54 and 4C 23.56) obtained with the W.M. Keck II 10m telescope, aimed at studying the relative contribution of the stellar and non-stellar components to the ultraviolet continuum. Both galaxies show strong linear polarization of the continuum between rest-frame $sim$1300-2000~AA, and the orientation of the electric vector is perpendicular to the main axis of the UV continuum. In this sense, our objects are like most 3C radio galaxies at $zsim1$. The total flux spectra of 4C 00.54 and 4C 23.56 do not show the strong P-Cygni absorption features or the photospheric absorption lines expected when the UV continuum is dominated by young and massive stars. The only features detected can be ascribed to interstellar absorptions by SiII, CII and OI. Our results are similar to those for 3C radio galaxies at lower $z$, suggesting that the UV continuum of powerful radio galaxies at $zsim2.5$ is still dominated by non-stellar radiation, and that young massive stars do not contribute more than $approx$50% to the total continuum flux at 1500~AA.
324 - Alan Stockton 2002
We have explored the nature of the extended emission-line region around the z=0.37 quasar 4C 37.43, using extensive ground-based and HST imaging and spectroscopy. The velocity field of the ionized gas shows gradual gradients within components but lar ge jumps between components, with no obvious global organization. The HST [O III] image shows radial linear features on the east side of the QSO that appear to mark the edges of an ionization cone. Concentrating on the bright emission peaks ~4arcsec$ east of the quasar, we find through modeling that we require at least two density regimes contributing significantly to the observed emission-line spectrum: one with a density of ~2 cm^-3, having essentially unity filling factor, and one with a density of ~500 cm^-3, having a very small (~10^-5) filling factor. Because the temperatures of these two components are similar, they cannot be in pressure equilibrium, and there is no obvious source of confinement for the dense regions. We estimate that the dense regions will dissipate on timescales <~10^4 years and therefore need to be continuously regenerated, most likely by shocks. Because we know that some QSOs, at least, begin their lives in conjunction with merger-driven massive starbursts in their host galaxies, an attractive interpretation is that the extended emission region comprises gas that has been expelled as a result of tidal forces during the merger and is now being shocked by the galactic superwind from the starburst. This picture is supported by the observed distribution of the ionized gas, the presence of velocities ranging up to ~700 km s^{-1}, and the existence of at least two QSOs having similarly luminous and complex extended emission regions that are known to have ultra-luminous IR galaxy hosts with current or recent starbursts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا