ﻻ يوجد ملخص باللغة العربية
Using data from the All Sky Monitor (ASM) on the Rossi X-ray Timing Explorer (RXTE) we have searched for long term periodicities in the X-ray flux of GX 1+4, Sco X-2 (GX 349+2), and GX 339-4. For GX 1+4 we also used data from BATSE and Galactic Centre scans performed by RXTE. We find no evidence for X-ray modulations at the suggested ~304 d orbital period of GX 1+4. However, we find tentative evidence for a periodicity at 420 d to 460 d. An upper limit of 15% peak-to-peak is set on any sinusoidal modulation in the 1.5 - 3.0 keV flux of Sco X-2 for periods in the 30 to 100 d range. For GX 339-4 we confirm the Low State modulation and report the detection of significant low-frequency modulations in both the High State and Very High State. We fail to detect this modulation in the Off State. We show that if the reported orbital period of GX 339-4 lies in the range 0.5 - 1.7 d, then it is not present in the RXTE ASM light curve.
We present photometric observations of the field around the optical counterparts of high-mass X-ray binaries. Our aim is to study the long-term photometric variability in correlation with their X-ray activity and derive a set of secondary standard st
We present the results of our monitoring program to study the long-term variability of the Halpha line in high-mass X-ray binaries. We have carried out the most complete optical spectroscopic study of the global properties of high-mass X-ray binaries
A homogeneous set of UBV photometry (354 data points obtained between 1983 and 1998) for the Be/X-ray binary A0535+26 = V725Tau is analysed, aiming to look for possible periodic component(s). After subtraction of the long-term variation it was found
The X-ray light-curves of the recurring outbursts observed in low-mass X-ray binaries provide strong test beds for constraining (still) poorly understood disc-accretion processes. These light-curves act as a powerful diagnostic to probe the physics b
We summarize the observations of the spin periods of rapidly accreting neutron stars. If gravitational radiation is responsible for balancing the accretion torque at the observed spin frequencies of ~300 Hz, then the brightest of these systems make e