ﻻ يوجد ملخص باللغة العربية
We report on the first extra-solar planet discovered with the brand new HARPS instrument. The planet is a typical hot Jupiter with m2sini = 0.62 MJup and an orbital period of 3.39 days, but from the photometric follow-up of its parent star HD330075 we can exclude the presence of a transit. The induced radial-velocity variations exceed 100 m/s in semi-amplitude and are easily detected by state-of-the-art spectro-velocimeters. Nevertheless, the faint magnitude of the parent star (V = 9.36) benefits from the efficient instrument: With HARPS less than 10 observing nights and 3 hours of total integration time were needed to discover the planet and characterize its orbit. The orbital parameters determined from the observations made during the first HARPS run in July 2003 have been confirmed by 7 additional observations carried out in February 2004. The bisector analysis and a photometric follow-up give no hint for activity-induced radial-velocity variations, indicating that the velocity curve is best explained by the presence of a low-mass companion to the star. In this paper we present a set of 21 measurements of excellent quality with weighted rms as low as 2.0 m/s. These measurements lead to a well defined orbit and consequently to the precise orbital parameters determination of the extra-solar planet HD330075b.
(Abridged) Searching for planets around stars with different masses probes the outcome of planetary formation for different initial conditions. This drives observations of a sample of 102 southern nearby M dwarfs, using a fraction of our guaranteed t
Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to impro
Stellar metallicity -- as a probe of the metallicity of proto-planetary disks -- is an important ingredient for giant planet formation, likely through its effect on the timescales in which rocky/icy planet cores can form. Giant planets have been foun
We report the discovery of four super-Earth planets around HD 215152, with orbital periods of 5.76, 7.28, 10.86, and 25.2 d, and minimum masses of 1.8, 1.7, 2.8, and 2.9 M_Earth respectively. This discovery is based on 373 high-quality radial velocit
Context. The presence of a small-mass planet (M$_p<$0.1,M$_{Jup}$) seems, to date, not to depend on metallicity, however, theoretical simulations have shown that stars with subsolar metallicities may be favoured for harbouring smaller planets. A larg