ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar and Dynamical Masses of Ellipticals in the Sloan Digital Sky Survey

63   0   0.0 ( 0 )
 نشر من قبل Nikhil Padmanabhan
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the variation of the dark matter mass fraction of elliptical galaxies as a function of their luminosity, stellar mass, and size using a sample of 29,469 elliptical galaxies culled from the Sloan Digital Sky Survey. We model ellipticals as a stellar Hernquist profile embedded in an adiabatically compressed dark matter halo. This model allows us to estimate a dynamical mass ($M_{dynm}$) at the half-light radius from the velocity dispersion of the spectra, and to compare these to the stellar mass estimates ($M_{*}$) from Kauffmann et al (2003). We find that $M_{*}/L$ is independent of luminosity, while $M_{dynm}/L$ increases with luminosity, implying that the dark matter fraction increases with luminosity. We also observe that at a fixed luminosity or stellar mass, the dark matter fraction increases with increasing galaxy size or, equivalently, increases with decreasing surface brightness: high surface brightness galaxies show almost no evidence for dark matter, while in low surface brightness galaxies, the dark matter exceeds the stellar mass at the half light radius. We relate this to the fundamental plane of elliptical galaxies, suggesting that the tilt of this plane from simple virial predictions is due to the dark matter in galaxies. We find that a simple model where galaxies are embedded in dark matter halos and have a star formation efficiency independent of their surface brightness explains these trends. We estimate the virial mass of ellipticals as being approximately 7-30 times their stellar mass, with the lower limit suggesting almost all of the gas within the virial radius is converted into stars.

قيم البحث

اقرأ أيضاً

We measure black hole masses for 71 BL Lac objects from the Sloan Digital Sky Survey with redshifts out to z~0.4. We perform spectral decompositions of their nuclei from their host galaxies and measure their stellar velocity dispersions. Black hole m asses are then derived from the black hole mass - stellar velocity dispersion relation. We find BL Lac objects host black holes of similar masses, ~10^{8.5} M_sun, with a dispersion of 0.4 dex, similar to the uncertainties on each black hole measurement. Therefore, all BL Lac objects in our sample have the same indistinguishable black hole mass. These 71 BL Lac objects follow the black hole mass - bulge luminosity relation, and their narrow range of host galaxy luminosities confirm previous claims that BL Lac host galaxies can be treated as standard candles. We conclude that the observed diversity in the shapes of BL Lac object spectral energy distributions is not strongly driven by black hole mass or host galaxy properties.
70 - Jeffrey R. Pier 2002
The astrometric calibration of the Sloan Digital Sky Survey is described. For point sources brighter than r ~ 20 the astrometric accuracy is 45 milliarcseconds (mas) rms per coordinate when reduced against the USNO CCD Astrograph Catalog, and 75 mas rms when reduced against Tycho-2, with an additional 20 - 30 mas systematic error in both cases. The rms errors are dominated by anomalous refraction and random errors in the primary reference catalogs. The relative astrometric accuracy between the r filter and each of the other filters (u g i z) is 25 - 35 mas rms. At the survey limit (r ~ 22), the astrometric accuracy is limited by photon statistics to approximately 100 mas rms for typical seeing. Anomalous refraction is shown to contain components correlated over two or more degrees on the sky.
We quantify the variability of faint unresolved optical sources using a catalog based on multiple SDSS imaging observations. The catalog covers SDSS Stripe 82, and contains 58 million photometric observations in the SDSS ugriz system for 1.4 million unresolved sources. In each photometric bandpass we compute various low-order lightcurve statistics and use them to select and study variable sources. We find that 2% of unresolved optical sources brighter than g=20.5 appear variable at the 0.05 mag level (rms) simultaneously in the g and r bands. The majority (2/3) of these variable sources are low-redshift (<2) quasars, although they represent only 2% of all sources in the adopted flux-limited sample. We find that at least 90% of quasars are variable at the 0.03 mag level (rms) and confirm that variability is as good a method for finding low-redshift quasars as is the UV excess color selection (at high Galactic latitudes). We analyze the distribution of lightcurve skewness for quasars and find that is centered on zero. We find that about 1/4 of the variable stars are RR Lyrae stars, and that only 0.5% of stars from the main stellar locus are variable at the 0.05 mag level. The distribution of lightcurve skewness in the g-r vs. u-g color-color diagram on the main stellar locus is found to be bimodal (with one mode consistent with Algol-like behavior). Using over six hundred RR Lyrae stars, we demonstrate rich halo substructure out to distances of 100 kpc. We extrapolate these results to expected performance by the Large Synoptic Survey Telescope and estimate that it will obtain well-sampled 2% accurate, multi-color lightcurves for ~2 million low-redshift quasars, and will discover at least 50 million variable stars.
122 - Nelson D. Padilla 2008
We determine the underlying shapes of spiral and elliptical galaxies in the Sloan Digital Sky Survey Data Release 6 from the observed distribution of projected galaxy shapes, taking into account the effects of dust extinction and reddening. We assume that the underlying shapes of spirals and ellipticals are well approximated by triaxial ellipsoids. The elliptical galaxy data are consistent with oblate spheroids, with a correlation between luminosity and ellipticity: the mean values of minor to middle axis ratios are 0.41+-0.03 for Mr ~ -18 ellipticals, and 0.76+-0.04 for Mr ~-22.5 ellipticals. Ellipticals show almost no dependence of axial ratio on galaxy colour, implying a negligible dust optical depth. There is a strong variation of spiral galaxy shapes with colour indicating the presence of dust. The intrinsic shapes of spiral galaxies in the SDSS-DR6 are consistent with flat disks with a mean and dispersion of thickness to diameter ratio of (21+-2)%, and a face-on ellipticity, e, of ln(e)=-2.33+-0.79. Not including the effects of dust in the model leads to disks that are systematically rounder by up to 60%. More luminous spiral galaxies tend to have thicker and rounder disks than lower-luminosity spirals. Both elliptical and spiral galaxies tend to be rounder for larger galaxies. The marginalised value of the edge-on r-band dust extinction E_0 in spiral galaxies is E_0 ~ 0.45 magnitudes for galaxies of median colours, increasing to E_0=1 magnitudes for g-r>0.9 and E_0=1.9 for the luminous and most compact galaxies, with half-light radii <2kpc/h.
We present the observed fraction of galaxies with an Active Galactic Nucleus (AGN) as a function of environment in the Early Data Release of the Sloan Digital Sky Survey (SDSS). Using 4921 galaxies between 0.05 <= z <= 0.095, and brighter than M_r* = -20.0 (or M* +1.45), we find at least ~ 20% of these galaxies possess an unambiguous detection of an AGN, but this fraction could be as high as ~40% after we model the ambiguous emission line galaxies in our sample. We have studied the environmental dependence of galaxies using the the distance to the 10^th nearest neighbor. As expected, we observe that the fraction of star--forming galaxies decreases with density, while the fraction of passive galaxies increases with density. In contrast, the fraction of galaxies with an AGN remains constant from the cores of galaxy clusters to the rarefied field population. We conclude that the presence of an AGN is independent of the disk component of a galaxy. Our analyses are robust against measurement error, definition of an AGN, aperture bias, stellar absorption, survey geometry and signal--to--noise. Our observations are consistent with the hypothesis that a supermassive black hole resides in the bulge of all massive galaxies and ~40% of these black holes are seen as AGNs in our sample. A high fraction of local galaxies with an AGN suggests that either the mean lifetime of these AGNs is longer than previously thought (>10^8 years), or that the AGN burst more often than expected; ~40 times over the redshift range of our sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا