ترغب بنشر مسار تعليمي؟ اضغط هنا

The Radial Velocity Precision of Fiber-fed Spectrographs

253   0   0.0 ( 0 )
 نشر من قبل David Bohlender
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the radial velocities of five 51 Peg-type stars and one star with constant velocity. Our measurements, on 20 AA centered at 3947 AA, were conventional using Th/Ar comparison spectra taken every 20 or 40 minutes between the stellar exposures. Existing IRAF routines were used for the reduction. We find $sigma_{RV}$ $leq$ 20 m s$^{-1}$, provided 4 measurements (out of 72) with residuals $>5sigma_{RV}$ are neglected. The observations were made with the CFHT Gecko spectrograph, fiber-fed with the CAFE system (R$sim$110,000). $sigma_{RV}$ $leq$10 m s$^{-1}$ seems possible with additional care. This study was incidental to the main program and so not exhaustive but the small value of $sigma_{RV}$ implies that the fiber feed/image slicer system on Gecko + CAFE, essentially eliminates the long standing problem of guiding errors in radial velocity measurements. We are not suggesting this conventional approach for serious Doppler planet searches (especially with Gecko which has such a small multiplex gain), but the precision is valuable for observations made in spectral regions remote from telluric lines or captive-gas fiducials. Instrument builders might consider the advantages of the CAFE optics which incorporate agitation and invert the object and pupil for slit and grating illumination in future spectrograph designs.



قيم البحث

اقرأ أيضاً

We present spectrograph design details and initial radial velocity results from the PRL optical fiber-fed high-resolution cross-dispersed echelle spectrograph (PARAS), which has recently been commissioned at the Mt Abu 1.2 m telescope, in India. Data obtained as part of the post-commissioning tests with PARAS show velocity precision better than 2m/s over a period of several months on bright RV standard stars. For observations of sigma-Dra we report 1.7m/s precision for a period of seven months and 2.1m/s for HD 9407 over a period of 2 months. PARAS is capable of a single-shot spectral coverage of 3800A - 9500A at a resolution of about 67,000. The RV results were obtained between 3800A and 6900A using simultaneous wavelength calibration with a Thorium-Argon (ThAr) hollow cathode lamp. The spectrograph is maintained under stable conditions of temperature with a precision of 0.01 - 0.02C (rms) at 25.55C, and enclosed in a vacuum vessel at pressure of 0.1 +/-0.03 mbar. The blaze peak efficiency of the spectrograph between 5000A and 6500A, including the detector, is 30%; and about 25% with the fiber transmission. The total efficiency, including spectrograph, fiber transmission, focal ratio degradation (FRD), and telescope (with 81% reflectivity) is about 7% in the same wavelength region on a clear night with good seeing conditions.
We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.
The CHIRON optical high-resolution echelle spectrometer was commissioned at the 1.5m telescope at CTIO in 2011. The instrument was designed for high throughput and stability, with the goal of monitoring radial velocities of bright stars with high pre cision and high cadence for the discovery of low-mass exoplanets. Spectral resolution of R=79,000 is attained when using a slicer with a total (including telescope and detector) efficiency of 6% or higher, while a resolution of R=136,000 is available for bright stars. A fixed spectral range of 415 to 880 nm is covered. The echelle grating is housed in a vacuum enclosure and the instrument temperature is stabilized to +-0.2deg. Stable illumination is provided by an octagonal multimode fiber with excellent light-scrambling properties. An iodine cell is used for wavelength calibration. We describe the main optics, fiber feed, detector, exposure-meter, and other aspects of the instrument, as well as the observing procedure and data reduction.
We have built and commissioned a prototype agitated non-circular core fiber scrambler for precision spectroscopic radial velocity measurements in the near-infrared H band. We have collected the first on-sky performance and modal noise tests of these novel fibers in the near-infrared at H and K bands using the CSHELL spectrograph at the NASA InfraRed Telescope Facility (IRTF). We discuss the design behind our novel reverse injection of a red laser for co-alignment of star-light with the fiber tip via a corner cube and visible camera. We summarize the practical details involved in the construction of the fiber scrambler, and the mechanical agitation of the fiber at the telescope. We present radial velocity measurements of a bright standard star taken with and without the fiber scrambler to quantify the relative improvement in the obtainable blaze function stability, the line spread function stability, and the resulting radial velocity precision. We assess the feasibility of applying this illumination stabilization technique to the next generation of near-infrared spectrographs such as iSHELL on IRTF and an upgraded NIRSPEC at Keck. Our results may also be applied in the visible for smaller core diameter fibers where fiber modal noise is a significant factor, such as behind an adaptive optics system or on a small < 1 meter class telescope such as is being pursued by the MINERVA and LCOGT collaborations.
358 - F. Bouchy , R.F. Diaz , G. Hebrard 2012
High-precision spectrographs play a key role in exoplanet searches and Doppler asteroseismology using the radial velocity technique. The 1 m/s level of precision requires very high stability and uniformity of the illumination of the spectrograph. In fiber-fed spectrographs such as SOPHIE, the fiber-link scrambling properties are one of the main conditions for high precision. To significantly improve the radial velocity precision of the SOPHIE spectrograph, which was limited to 5-6 m/s, we implemented a piece of octagonal-section fiber in the fiber link. We present here the scientific validation of the upgrade of this instrument, demonstrating a real improvement. The upgraded instrument, renamed SOPHIE+, reaches radial velocity precision in the range of 1-2 m/s. It is now fully efficient for the detection of low-mass exoplanets down to 5-10 Earth mass and for the identification of acoustic modes down to a few tens of cm/s.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا