ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculation of an optimized telescope apodizer for Terrestrial Planet Finder coronagraphic telescope

61   0   0.0 ( 0 )
 نشر من قبل Peter Nisenson
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Gonsalves




اسأل ChatGPT حول البحث

One of two approaches to implementing NASAs Terrestrial Planet Finder is to build a space telescope that utilizes the techniques of coronagraphy and apodization to suppress diffraction and image exo-planets. We present a method for calculation of a telescopes apodizer which suppresses the side lobes of the image of a star so as to optimally detect an Earth-like planet. Given the shape of a telescopes aperture and given a search region for a detector, we solve an integral equation to determine an amplitude modulation (an apodizer) which suppresses the stars energy in the focal plane search region. The method is quite general and yields as special cases the product apodizer reported by Nisenson and Papaliolios (2001) and the Prolate spheroidal apodizer of Kasdin et al (2002), and Aime et al (2002). We show computer simulations of the apodizers and the corresponding point spread functions for various aperture-detector configurations.

قيم البحث

اقرأ أيضاً

61 - Olivier Guyon 2003
In this paper, an alternative to the classical pupil apodization techniques (use of an amplitude pupil mask) is proposed. It is shown that an apodized pupil suitable for imaging of Extrasolar planets can be obtained by reflection of an unapodized fla t wavefront on 2 mirrors. By carefully choosing the shape of these 2 mirrors, it is possible to obtain a contrast better than 10^{9} at a distance smaller than 2 lambda/d from the optical axis. Because this technique preserves both the angular resolution and light gathering capabilities of the unapodized pupil, it allows efficient detection of terrestrial extrasolar planets with a 1.5m telescope in the visible.
113 - S. Seager 2002
For the first time in human history the possibility of detecting and studying Earth-like planets is on the horizon. Terrestrial Planet Finder (TPF), with a launch date in the 2015 timeframe, is being planned by NASA to find and characterize planets i n the habitable zones of nearby stars. The mission Darwin from ESA has similar goals. The motivation for both of these space missions is the detection and spectroscopic characterization of extrasolar terrestrial planet atmospheres. Of special interest are atmospheric biomarkers--such as O2, O3, H2O, CO and CH4--which are either indicative of life as we know it, essential to life, or can provide clues to a planets habitability. A mission capable of measuring these spectral features would also obtain sufficient signal-to-noise to characterize other terrestrial planet properties. For example, physical characteristics such as temperature and planetary radius can be constrained from low- resolution spectra. In addition, planet characteristics such as weather, rotation rate, presence of large oceans or surface ice, and existence of seasons could be derived from photometric measurements of the planets variability. We will review the potential to characterize terrestrial planets beyond their spectral signatures. We will also discuss the possibility to detect strong surface biomarkers--such as Earths vegetation red edge near 700 nm--that are different from any known atomic, molecular, or mineralogical signature.
The Terrestrial Planet Finder Coronagraph (TPF-C) mission presented here is an existence proof for a flagship-class internal coronagraph space mission capable of detecting and characterizing Earth-like planets and planetary systems at visible wavelen gths around nearby stars, using an existing launch vehicle. TPF-C will use spectroscopy to measure key properties of exoplanets including the presence of atmospheric water or oxygen, powerful signatures in the search for habitable worlds.
Spectroscopic observations are extremely important for determining the composition, structure, and surface gravity of exoplanetary atmospheres. High resolution spectroscopy of the planet itself has only been demonstrated a handful of times. By using advanced high contrast imagers, it is possible to conduct high resolution spectroscopy on imageable exoplanets, after the star light is first suppressed with an advanced coronagraph. Because the planet is spatially separated in the focal plane, a single mode fiber could be used to collect the light from the planet alone, reducing the photon noise by orders of magnitude. In addition, speckle control applied to the location where an exoplanet is known to exist, can be used to preferentially reject the stellar flux from the fiber further. In this paper we will present the plans for conducting high resolution spectroscopic studies of this nature with the combination of SCExAO and IRD in the H-band on the Subaru Telescope. This technique will be critical to the characterization of terrestrial planets on ELTs and future space missions.
We present the scientific motivation and conceptual design for the recently funded Habitable-zone Planet Finder (HPF), a stabilized fiber-fed near-infrared (NIR) spectrograph for the 10 meter class Hobby-Eberly Telescope (HET) that will be capable of discovering low mass planets around M dwarfs. The HPF will cover the NIR Y & J bands to enable precise radial velocities to be obtained on mid M dwarfs, and enable the detection of low mass planets around these stars. The conceptual design is comprised of a cryostat cooled to 200K, a dual fiber-feed with a science and calibration fiber, a gold coated mosaic echelle grating, and a Teledyne Hawaii-2RG (H2RG) NIR detector with a 1.7$mu$m cutoff. A uranium-neon hollow-cathode lamp is the baseline wavelength calibration source, and we are actively testing laser frequency combs to enable even higher radial velocity precision. We will present the overall instrument system design and integration with the HET, and discuss major system challenges, key choices, and ongoing research and development projects to mitigate risk. We also discuss the ongoing process of target selection for the HPF survey.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا