ﻻ يوجد ملخص باللغة العربية
We report and interpret HST/STIS long-slit observations of the optical and ultraviolet (1150 - 10270 Angstrom) emission-line spectra of the rapidly brightening Spot 1 on the equatorial ring of SN 1987A between 1997 September and 1999 October (days 3869 -- 4606 after outburst). The emission is caused by radiative shocks created where the supernova blast wave strikes dense gas protruding inward from the equatorial ring. We measure and tabulate line identifications, fluxes and, in some cases, line widths and shifts. We compute flux correction factors to account for substantial interstellar line absorption of several emission lines. Nebular analysis shows that optical emission lines come from a region of cool (T_e ~ 10^4 K) and dense (n_e ~ 10^6 cm^-3) gas in the compressed photoionized layer behind the radiative shock. The observed line widths indicate that only shocks with shock velocities V_s < 250 km/s have become radiative, while line ratios indicate that much of the emission must have come from yet slower (V_s < 135 k/ms) shocks. We are able to fit the UV fluxes with an idealized radiative shock model consisting of two shocks (V_s = 135 and 250 km/s). The observed UV flux increase with time can be explained by the increase in shock surface areas as the blast wave overtakes more of the protrusion. The observed flux ratios of optical to highly-ionized UV lines are greater by a factor of ~ 2 -- 3 than predictions from the radiative shock models and we discuss the possible causes. We also present models for the observed H-alpha line widths and profiles, which suggests that a chaotic flow exists in the photoionized regions of these shocks. We discuss what can be learned with future observations of all the spots present on the equatorial ring.
We present imaging and spectroscopic observations with HST and VLT of the ring of SN 1987A from 1994 to 2014. After an almost exponential increase of the shocked emission from the hotspots up to day ~8,000 (~2009), both this and the unshocked emissio
The nearby SN 1987A offers a spatially resolved view of the evolution of a young supernova remnant. Here we precent recent Hubble Space Telescope imaging observations of SN 1987A, which we use to study the evolution of the ejecta, the circumstellar e
We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST) in 1999 September, and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November. No point source is ob
We have used the Faint Object Spectrograph on the Hubble Space Telescope to observe the spectra of SN 1987A over the wavelength range 2000 -- 8000 AA on dates 1862 and 2210 days after the supernova outburst. Even these pre-COSTAR observations avoid m
Observations with the Hubble Space Telescope (HST), conducted since 1990, now offer an unprecedented glimpse into fast astrophysical shocks in the young remnant of supernova 1987A. Comparing observations taken in 2010 using the refurbished instrument