ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable Stars in the Fornax Dwarf Galaxy

83   0   0.0 ( 0 )
 نشر من قبل David Bersier
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Bersier




اسأل ChatGPT حول البحث

We present a search for variable stars in the Fornax dwarf galaxy covering an area of 1/2 a square degree. We have ~30 epochs of VI data. We found and determined periods for more than 500 RR Lyrae, 17 anomalous Cepheids, 6 Population II Cepheids. In addition we have 85 candidate Long Period Variables, the majority of which were previously unknown. We estimated that the average metal abundance of RR Lyrae stars is [Fe/H] ~ -1.6 dex.

قيم البحث

اقرأ أيضاً

We report on a multi-epoch study of the Fornax dwarf spheroidal galaxy, made with the Infrared Survey Facility, over an area of about 42x42. The colour-magnitude diagram shows a broad well-populated giant branch with a tip that slopes down-wards from red to blue, as might be expected given Fornaxs known range of age and metallicity. The extensive AGB includes seven Mira variables and ten periodic semi-regular variables. Five of the seven Miras are known to be carbon rich. Their pulsation periods range from 215 to 470 days, indicating a range of initial masses. Three of the Fornax Miras are redder than typical LMC Miras of similar period, probably indicating particularly heavy mass-loss rates. Many, but not all, of the characteristics of the AGB are reproduced by isochrones from Marigo et al. for a 2 Gyr population with a metallicity of Z=0.0025. An application of the Mira period-luminosity relation to these stars yields a distance modulus for Fornax of 20.69+/-0.04 (internal), +/-0.08 (total) (on a scale that puts the LMC at 18.39 mag) in good agreement with other determinations. Various estimates of the distance to Fornax are reviewed.
232 - Claudia Greco 2009
We present a new study of the variable star population in globular cluster 5 of the Fornax dwarf spheroidal galaxy, based on B and V time series photometry obtained with the MagIC camera of the 6.5 m Magellan Clay telescope and complementary HST arch ive data. Light curves and accurate periodicities were obtained for 30 RR Lyrae stars and 1 SX Phoenicis variable. The RR Lyrae sample includes 15 fundamental-mode pulsators, 13 first-overtone pulsators, 1 candidate double-mode pulsator and one RR Lyrae star with uncertain type classification. The average and minimum periods of the ab-type RR Lyrae stars, <Pab>=0.590 days, P(ab,min)=0.53297 days, and the position in the horizontal branch type--metallicity plane, indicate that the cluster has Oosterhoff-intermediate properties, basically confirming previous indications by Mackey & Gilmore (2003b), although with some differences both in the period and type classification of individual variables. The average apparent magnitude of the Fornax 5 RR Lyrae stars is <V(RR)>=21.35 +/- 0.02 mag (sigma=0.07 mag, average on 14 stars more likely belonging to the cluster, and having well sampled light curves). This value leads to a true distance modulus of mu0=20.76 +/- 0.07 (d=141.9 (+4.6;-4.5) kpc) if we adopt for the cluster the metal abundance by Buonanno et al. (1998; [Fe/H]=-2.20 +/- 0.20), or mu0=20.66 +/- 0.07 (d=135.5 (+4.4;-4.3) kpc), if we adopt Strader et al.s (2003) metal abundance ([Fe/H]=-1.73 +/- 0.13).
392 - C. Greco 2007
Variable stars have been identified for the first time in Fornax 4, the globular cluster located near the center of the Fornax dwarf spheroidal galaxy. By applying the image subtraction technique to B,V time series photometry obtained with the MagIC camera of the 6.5-m Magellan/Clay telescope and with the wide field imager of the 4-m Blanco/CTIO telescope, we detected 27 RR Lyrae stars (22 fundamental mode, 3 first overtone, and 2 double-mode pulsators) in a 2.4x2.4 area centered on Fornax 4. The average and minimum periods of the ab-type RR Lyrae stars, <Pab>= 0.594 d and P(ab,min)=0.5191 d, respectively, as well as the revised position of the cluster in the horizontal branch type--metallicity plane, all consistently point to an Oosterhoff-intermediate status for the cluster, unlike what is seen for the vast majority of Galactic globular clusters, but in agreement with previous indications for the other globular clusters in Fornax. The average apparent magnitude of the RR Lyrae stars located within 30 arcsec from the cluster center is <V(RR)>=21.43 +/- 0.03 mag (sigma=0.10 mag, average on 12 stars), leading to a true distance modulus of (m-M)o=20.64 +/- 0.09 mag or (m-M)o=20.53 +/- 0.09 mag, depending on whether a low ([Fe/H]=-2.0) or a moderately high ([Fe/H]=-1.5) metallicity is adopted.
We present a CCD survey of variable stars in the Draco dwarf spheroidal galaxy. This survey, which has the largest areal coverage since the original variable star survey by Baade & Swope, includes photometry for 270 RR Lyrae stars, 9 anomalous Cephei ds, 2 eclipsing binaries, and 12 slow, irregular red variables, as well as 30 background QSOs. Twenty-six probable double-mode RR Lyrae stars were identified. Observed parameters, including mean V and I magnitudes, V amplitudes, and periods, have been derived. Photometric metallicities of the ab-type RR Lyrae stars were calculated according to the method of Jurcsik & Kovacs, yielding a mean metallicity of <[Fe/H]> = -2.19 +/- 0.03. The well known Oosterhoff intermediate nature of the RR Lyrae stars in Draco is reconfirmed, although the double-mode RR Lyrae stars with one exception have properties similar to those found in Oosterhoff type II globular clusters. The period-luminosity relation of the anomalous Cepheids is rediscussed with the addition of the new Draco anomalous Cepheids.
83 - M. Matsuura 2007
We have observed five carbon-rich AGB stars in the Fornax dwarf spheroidal (dSph) galaxy, using the Infrared Spectrometer on board the Spitzer Space Telescope. The stars were selected from a near-infrared survey of Fornax and include the three reddes t stars, with presumably the highest mass-loss rates, in that galaxy. Such carbon stars probably belong to the intermediate-age population (2-8 Gyr old and metallicity of [Fe/H] -1) of Fornax. The primary aim of this paper is to investigate mass-loss rate, as a function of luminosity and metallicity, by comparing AGB stars in several galaxies with different metallicities. The spectra of three stars are fitted with a radiative transfer model. We find that mass-loss rates of these three stars are 4-7x10^-6 Msun yr-1. The other two stars have mass-loss rates below 1.3x10^-6 Msun yr-1. We find no evidence that these rates depend on metallicity, although we do suggest that the gas-to-dust ratio could be higher than at solar metallicity, in the range 240 to 800. The C2H2 bands are stronger at lower metallicity because of the higher C/O ratio. In contrast, the SiC fraction is reduced at low metallicity, due to low silicon abundance. The total mass-loss rate from all known carbon-rich AGB stars into the interstellar medium of this galaxy is of the order of 2x10^-5 Msun yr-1. This is much lower than that of the dwarf irregular galaxy WLM, which has a similar visual luminosity and metallicity. The difference is attributed to the younger stellar population of WLM. The suppressed gas-return rate to the ISM accentuates the difference between the relatively gas-rich dwarf irregular and the gas-poor dwarf spheroidal galaxies. Our study will be useful to constrain gas and dust recycling processes in low metallicity galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا