ﻻ يوجد ملخص باللغة العربية
Isotope anomalies provide important information about early solar system evolution. Here we report molybdenum isotope abundances determined in samples of various meteorite classes. There is no fractionation of molybdenum isotopes in our sample set within 0.1 permil and no contribution from the extinct radionuclide 97Tc at mass 97 (97Tc/92Mo<3E-6). Instead, we observe clear anomalies in bulk iron meteorites, mesosiderites, pallasites, and chondrites characterized by a coupled excess in p- and r- or a mirror deficit in s-process nuclides (Mo-HL). This large scale isotope heterogeneity of the solar system observed for molybdenum must have been inherited from the interstellar environment where the sun was born, illustrating the concept of ``cosmic chemical memory. The presence of molybdenum anomalies is used to discuss the filiation between planetesimals.
Among extinct radioactivities present in meteorites, 60Fe (t1/2 = 1.49 Myr) plays a key role as a high-resolution chronometer, a heat source in planetesimals, and a fingerprint of the astrophysical setting of solar system formation. A critical issue
The bulk chemical compositions of planets are uncertain, even for major elements such as Mg and Si. This is due to the fact that the samples available for study all originate from relatively shallow depths. Comparison of the stable isotope compositio
Young planetary nebulae play an important role in stellar evolution when intermediate- to low-mass stars (0.8 ~ 8 M) evolve from the proto-planetary nebulae phase to the planetary nebulae phase. Many young planetary nebulae display distinct bipolar s
The young planetary nebulae play an important role in stellar evolution when intermediate- to low-mass stars (0.8 $sim$ 8 M$_odot$) evolve from the proto-planetary nebulae phase to the planetary nebulae phase. Many young planetary nebulae display dis
The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from crysta