ﻻ يوجد ملخص باللغة العربية
We have simulated encounters between planetary systems and single stars in various clustered environments. This allows us to estimate the fraction of systems liberated, the velocity distribution of the liberated planets, and the separation and eccentricity distributions of the surviving bound systems. Our results indicate that, for an initial distribution of orbits that is flat in log space and extends out to 50AU, 50% of the available planets can be liberated in a globular cluster, 25% in an open cluster, and less than 10% in a young cluster. These fractions are reduced to 25%, 12% and 2% if the initial population extends only to 20AU. Furthermore, these free-floating planets can be retained for longer than a crossing time only in a massive globular cluster. It is therefore difficult to see how planets, which by definition form in a disc around a young star, could be subsequently liberated to form a significant population of free floating substellar objects in a cluster.
The mass and distance functions of free-floating planets (FFPs) would give major insights into the formation and evolution of planetary systems, including any systematic differences between those in the disk and bulge. We show that the only way to me
Genomic complexity can be used as a clock with which the moment in which life originated can be measured. Some authors who have studied this problem have come to the conclusion that it is not possible that terrestrial life originated here and that, i
Planet formation theories predict the existence of free-floating planets that have been ejected from their parent systems. Although they emit little or no light, they can be detected during gravitational microlensing events. Microlensing events cause
We describe the results of a very deep imaging survey of the Trapezium Cluster in the IJH bands, using the UKIRT high resolution camera UFTI. Approximately 32% of the 515 point sources detected are brown dwarf candidates, including several free float
A free-floating planet is a planetary-mass object that orbits around a non-stellar massive object (e.g. a brown dwarf) or around the Galactic Center. The presence of exomoons orbiting free-floating planets has been theoretically predicted by several