ﻻ يوجد ملخص باللغة العربية
Deep near-infrared photometric surveys are efficient in identifying high-redshift galaxies, however they can be prone to systematic errors in photometric redshift. This is particularly salient when there is limited sampling of key spectral features of a galaxys spectral energy distribution (SED), such as for quiescent galaxies where the expected age-sensitive Balmer/4000 A break enter the $K$-band at $z>4$. With single filter sampling of this spectral feature, degeneracies between SED models and redshift emerge. A potential solution to this comes from splitting the $K$-band into multiple filters. We use simulations to show an optimal solution is to add two medium-band filters, $K_mathrm{blue}$ ($lambda_mathrm{cen}$=2.06 $mu$m, $Deltalambda$=0.25 $mu$m) and $K_mathrm{red}$ ($lambda_mathrm{cen}$=2.31 $mu$m, $Deltalambda$=0.27 $mu$m), that are complementary to the existing $K_mathrm{s}$ filter. We test the impact of the $K$-band filters with simulated catalogues comprised of galaxies with varying ages and signal-to-noise. The results suggest that the $K$-band filters do improve photometric redshift constraints on $z>4$ quiescent galaxies, increasing precision and reducing outliers by up to 90$%$. We find that the impact from the $K$-band filters depends on the signal-to-noise, the redshift and the SED of the galaxy. The filters we designed were built and used to conduct a pilot of the FLAMINGOS-2 Extra-galactic Near-Infrared $K$-band Split (FENIKS) survey. While no new $z>4$ quiescent galaxies are identified in the limited area pilot, the $K_mathrm{blue}$ and $K_mathrm{red}$ filters indicate strong Balmer/4000 A breaks in existing candidates. Additionally we identify galaxies with strong nebular emission lines, for which the $K$-band filters increase photometric redshift precision and in some cases indicate extreme star-formation.
Multiple color selection techniques have been successful in identifying quasars from wide-field broad-band imaging survey data. Among the quasars that have been discovered so far, however, there is a redshift gap at $5 lesssim {rm z} lesssim 5.7$ due
We describe the selection of a sample of photometrically-defined Lyman break galaxies (LBGs) at z~5 using the multi-wavelength imaging data of the ESO Remote Galaxy Survey (ERGS). The data is drawn from ten widely-separated fields covering a total sk
Upon commissioning on Gemini South, FLAMINGOS-2 will be one of the most powerful wide-field near-infrared imagers and multi-object spectrographs ever built for use on 8-meter-class telescopes. In order to take best advantage of the strengths of FLAMI
We present the first measurements of the projected clustering and intrinsic alignments (IA) of galaxies observed by the Physics of the Accelerating Universe Survey (PAUS). With photometry in 40 narrow optical passbands ($450rm{nm}-850rm{nm}$), the qu
The determination of galaxy redshifts in James Webb Space Telescope (JWST)s blank-field surveys will mostly rely on photometric estimates, based on the data provided by JWSTs Near-Infrared Camera (NIRCam) at 0.6-5.0 {mu}m and Mid Infrared Instrument