ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersive heterodyne Brillouin spectroscopy

52   0   0.0 ( 0 )
 نشر من قبل Ayumu Ishijima
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Frequency- and time-domain Brillouin spectroscopy are powerful tools to read out the mechanical properties of complex systems in material and life sciences. Indeed, coherent acoustic phonons in the time-domain method offer superior depth resolution and a stronger signal than incoherent acoustic phonons in the frequency-domain method. However, it does not allow multichannel detection and therefore falls short in signal acquisition speed. Here, we present Brillouin spectroscopy that spans time- and frequency-domain to allow multichannel detection of Brillouin scattering light from coherent acoustic phonons. Our technique maps time-evolve Brillouin oscillations in a chromatic-dispersed laser pulses instantaneous frequency. Spectroscopic heterodyning of the Brillouin oscillations in the frequency domain enhances signal acquisition speed by at least 100-fold over the time-domain method. As a proof of concept, we imaged heterogeneous thin films over a wide bandwidth with nanometer depth resolution. We, therefore, foresee that our approach catalyses future phonon spectroscopy toward real-time mechanical imaging.

قيم البحث

اقرأ أيضاً

We theoretically investigate a new class of silicon waveguides for achieving Stimulated Brillouin Scattering (SBS) in the mid-infrared (MIR). The waveguide consists of a rectangular core supporting a low-loss optical mode, suspended in air by a serie s of transverse ribs. The ribs are patterned to form a finite quasi-one-dimensional phononic crystal, with the complete stopband suppressing the transverse leakage of acoustic waves, and confining them to the core of the waveguide. We derive a theoretical formalism that can be used to compute the opto-acoustic interaction in such periodic structures, and find forward intramodal-SBS gains up to $1750~text{m}^{-1}text{W}^{-1}$, which compares favorably with the proposed MIR SBS designs based on buried germanium waveguides. This large gain is achieved thanks to the nearly complete suppression of acoustic radiative losses.
Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multi-heterodyne spectroscop y using two terahertz quantum cascade laser combs. With just 100 $mu$s of integration time, we achieve peak signal-to-noise ratios exceeding 60 dB and a spectral coverage greater than 250 GHz centered at 2.8 THz. Even with room-temperature detectors we are able to achieve peak signal-to-noise ratios of 50 dB, and as a proof-of-principle we use these combs to measure the broadband transmission spectrum of etalon samples. Finally, we show that with proper signal processing, it is possible to extend the multi-heterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode, greatly expanding the range of quantum cascade lasers that could be suitable for these techniques.
Precision laser spectroscopy is key to many developments in atomic and molecular physics and the advancement of related technologies such as atomic clocks and sensors. However, in important spectroscopic scenarios, such as astronomy and remote sensin g, the light is of thermal origin and interferometric or diffractive spectrometers typically replace laser spectroscopy. In this work, we employ laser-based heterodyne radiometry to measure incoherent light sources in the near-infrared and introduce techniques for absolute frequency calibration with a laser frequency comb. Measuring the solar continuum, we obtain a signal to noise ratio that matches the prediction given by the thermal photon distribution and our systems quantum efficiency. With absolute frequency calibration we determine the center frequency of an iron line in the solar spectrum to MHz-level uncertainty in under 10 minutes, a fractional precision 1/4000 the linewidth. Additionally, we propose concepts that take advantage of refractive beam shaping to decrease pointing instabilities by nearly 100x, and of frequency comb multiplexing to increase data acquisition rates and spectral bandwidths by comparable factors. Taken together, our work brings the power of telecommunications photonics and the precision of frequency comb metrology to laser heterodyne radiometry, with implications for solar and astronomical spectroscopy, remote sensing, and precise Doppler velocimetry.
We formulate a generic concept of engineering optical modes and mechanical resonances in a pair of optically-coupled light-guiding membranes for achieving cascaded light scattering to multiple Stokes and anti-Stokes orders. By utilizing the light pre ssure exerted on the webs and their induced flexural vibrations, featuring flat phonon dispersion curve with a non-zero cut-off frequency, we show how to realize exact phase-matching between multiple successive optical side-bands. We predict continuous-wave generation of frequency combs for fundamental and high-order optical modes mediated via backward- and forward-propagating phonons, accompanied by periodic reversal of the energy flow between mechanical and optical modes without using any kind of cavity. These results reveal new possibilities for tailoring light-sound interactions through simultaneous Raman-like intramodal and Brillouin-like intermodal scattering processes.
72 - N. Galland , N. Lucic , S. Zhang 2020
We present an experimental technique for realizing a specific absorption spectral pattern in a rare-earth-doped crystal at cryogenic temperatures. This pattern is subsequently probed on two spectral channels simultaneously, thereby producing an error signal allowing frequency locking of a laser on the said spectral pattern. Appropriate combination of the two channels leads to a substantial reduction of the detection noise, paving the way to realizing an ultra-stable laser for which the detection noise can be made arbitrarily low when using multiple channels. We use such technique to realize a laser with a frequency instability of $1.7times 10^{-15}$ at 1 second, not limited by the detection noise but by environmental perturbation of the crystal. This is comparable with the lowest instability demonstrated at 1 second to date for rare-earth doped crystal stabilized lasers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا