ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectroscopic Signatures of Interlayer Coupling in Janus MoSSe/MoS2 Heterostructures

117   0   0.0 ( 0 )
 نشر من قبل Kunyan Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The interlayer coupling in van der Waals heterostructures governs a variety of optical and electronic properties. The intrinsic dipole moment of Janus transition metal dichalcogenides (TMDs) offers a simple and versatile approach to tune the interlayer interactions. In this work, we demonstrate how the van der Waals interlayer coupling and charge transfer of Janus MoSSe/MoS2 heterobilayers can be tuned by the twist angle and interface composition. Specifically, the Janus heterostructures with a sulfur/sulfur (S/S) interface display stronger interlayer coupling than the heterostructures with a selenium/sulfur (Se/S) interface as shown by the low-frequency Raman modes. The differences in interlayer interactions are explained by the interlayer distance computed by density-functional theory (DFT). More intriguingly, the built-in electric field contributed by the charge density redistribution and interlayer coupling also play important roles in the interfacial charge transfer. Namely, the S/S and Se/S interfaces exhibit different levels of PL quenching of MoS2 A exciton, suggesting the enhanced and reduced charge transfer at the S/S and Se/S interface, respectively. Our work demonstrates how the asymmetry of Janus TMDs can be used to tailor the interfacial interactions in van der Waals heterostructures.

قيم البحث

اقرأ أيضاً

243 - Shuanglong Liu , James N. Fry , 2020
In this computational work based on density functional theory we study the electronic and electron transport properties of asymmetric multi-layer MoSSe junctions, known as Janus junctions. Focusing on 4-layer systems, we investigate the influence of electric field, electrostatic doping, strain, and interlayer stacking on the electronic structure. We discover that a metal to semiconductor transition can be induced by an out-of-plane electric field. The critical electric field for such a transition can be reduced by in-plane biaxial compressive strain. Due to an intrinsic electric field, a 4-layer MoSSe can rectify out-of-plane electric current. The rectifying ratio reaches 34.1 in a model junction Zr/4-layer MoSSe/Zr. This ratio can be further enhanced by increasing the number of MoSSe layers. In addition, we show a drastic sudden vertical compression of 4-layer MoSSe due to in-plane biaxial tensile strain, indicating a second phase transition. Furthermore, an odd-even effect on electron transmission at the Fermi energy for Zr/$n$-layer MoSSe/Zr junctions with $n=1, , 2,, 3, ,dots,, 10$ is observed. These findings reveal the richness of physics in this asymmetric system and strongly suggest that the properties of 4-layer MoSSe are highly tunable, thus providing a guide to future experiments relating materials research and nanoelectronics.
Two-dimensional (2D) Janus transitional metal dichalcogenides (TMDCs) have great potential for photocatalytic water splitting due to their novel properties induced by the unique out-of-plane asymmetric structures. Here, we systematically investigate the geometric, electronic and optical properties of 2D Janus MoSSe with titanium doping and vacancies to explore their synergistic effects on photocatalytic activity. We find that there are effective attractions between the substituted or adsorbed Ti atoms and S/Se vacancies. The Ti adatoms dramatically extend the light absorption range to infrared region. The S/Se vacancies coexisting with Ti adatoms will modulate the transition of photo-excited electrons, thereby enhancing the sunlight absorption. The Ti adatoms either existing alone or coexisting with vacancies introduce smaller lattice distortion compared to substituted Ti atoms and these Ti adatoms induce smaller effective mass of charge carriers. The configuration of S vacancy coexisting with Ti adatoms on Se-surface exhibits the most significant synergistic effects and best overall photocatalytic performance. Our work reveals the mechanism and effects induced by doping and vacancies coexisting in 2D Janus TMDCs, also propose a new practical strategy to improve the performance of 2D photocatalysts.
Van der Waals (vdW) heterobilayers formed by two-dimensional (2D) transition metal dichalcogenides (TMDCs) created a promising platform for various electronic and optical properties. ab initio band results indicate that the band offset of type-II ban d alignment in TMDCs vdW heterobilayer could be tuned by introducing Janus WSSe monolayer, instead of an external electric field. On the basis of symmetry analysis, the allowed interlayer hopping channels of TMDCs vdW heterobilayer were determined, and a four-level kp model was developed to obtain the interlayer hopping. Results indicate that the interlayer coupling strength could be tuned by interlayer electric polarization featured by various band offsets. Moreover, the difference in the formation mechanism of interlayer valley excitons in different TMDCs vdW heterobilayers with various interlayer hopping strength was also clarified.
The mechanism of enhanced superconductivity in the one unit-cell (1UC) FeSe film on a SrTiO3 (STO) substrate has stimulated significant research interest but remains elusive. Using low-temperature, voltage-gated Raman spectroscopy and low-temperature valence electron energy loss spectroscopy (VEELS), we characterize the phonon behavior and interfacial charge transfer in single- and few-layer FeSe films on STO. Raman measurements reveal ambipolar softening of the FeSe vibrational modes, mimicking that of the underlying STO substrate. We attribute this behavior to an interfacial coupling effect of STO on FeSe lattice dynamics. This interfacial coupling effect is further supported by local electron effective mass enhancement, which is determined from the red-shift in the FeSe VEELS spectrum near the FeSe/STO interface. Our work sheds light on the possible interfacial mechanisms contributing to the enhanced superconductivity across the FeSe/STO interface and further unveils the potential of low-temperature gated Raman spectroscopy and VEELS in clarifying a broad category of quantum materials.
Vacancy centers in diamond have proven to be a viable solid-state platform for quantum coherent opto-electronic applications. Among the variety of vacancy centers, silicon-vacancy (SiV) centers have recently attracted much attention as an inversion-s ymmetric system that is less susceptible to electron-phonon interactions. Nevertheless, phonon-mediated processes still degrade the coherent properties of SiV centers, however characterizing their electron-phonon coupling is extremely challenging due to their weak spectroscopic signatures and remains an open experimental problem. In this paper we theoretically investigate signatures of electron-phonon coupling in simulated linear and nonlinear spectra of SiV centers. We demonstrate how even extremely weak electron-phonon interactions, such as in SiV centers, may be completely characterized via nonlinear spectroscopic techniques and even resolved between different fine-structure transitions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا