ترغب بنشر مسار تعليمي؟ اضغط هنا

Automorphic Bloch theorems for finite hyperbolic lattices

71   0   0.0 ( 0 )
 نشر من قبل Joseph Maciejko
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hyperbolic lattices are a new form of synthetic quantum matter in which particles effectively hop on a discrete tessellation of two-dimensional hyperbolic space, a non-Euclidean space of uniform negative curvature. To describe the single-particle eigenstates and eigenenergies for hopping on such a lattice, a hyperbolic generalization of band theory was previously constructed, based on ideas from algebraic geometry. In this hyperbolic band theory, eigenstates are automorphic functions, and the Brillouin zone is a higher-dimensional torus, the Jacobian of the compactified unit cell understood as a higher-genus Riemann surface. Three important questions were left unanswered: (1) whether a band theory can be expected to hold for a non-Euclidean lattice, where translations do not generally commute; (2) whether a formal Bloch theorem can be rigorously established; and (3) whether hyperbolic band theory can describe finite lattices realized in experiment. In the present work, we address all three questions simultaneously. By formulating periodic boundary conditions for finite but arbitrarily large lattices, we show that a generalized Bloch theorem can be rigorously proved, but may or may not involve higher-dimensional irreducible representations (irreps) of the nonabelian translation group, depending on the lattice geometry. Higher-dimensional irreps corrrespond to points in a moduli space of higher-rank stable holomorphic vector bundles, which further generalizes the notion of Brillouin zone beyond the Jacobian. For a large class of finite lattices, only one-dimensional irreps appear, and the hyperbolic band theory previously developed becomes exact.



قيم البحث

اقرأ أيضاً

The notions of Bloch wave, crystal momentum, and energy bands are commonly regarded as unique features of crystalline materials with commutative translation symmetries. Motivated by the recent realization of hyperbolic lattices in circuit quantum ele ctrodynamics, we exploit ideas from algebraic geometry to construct the first hyperbolic generalization of Bloch theory, despite the absence of commutative translation symmetries. For a quantum particle propagating in a hyperbolic lattice potential, we construct a continuous family of eigenstates that acquire Bloch-like phase factors under a discrete but noncommutative group of hyperbolic translations, the Fuchsian group of the lattice. A hyperbolic analog of crystal momentum arises as the set of Aharonov-Bohm phases threading the cycles of a higher-genus Riemann surface associated with this group. This crystal momentum lives in a higher-dimensional Brillouin zone torus, the Jacobian of the Riemann surface, over which a discrete set of continuous energy bands can be computed.
155 - Haiping Hu , Erhai Zhao 2020
Knots have a twisted history in quantum physics. They were abandoned as failed models of atoms. Only much later was the connection between knot invariants and Wilson loops in topological quantum field theory discovered. Here we show that knots tied b y the eigenenergy strings provide a complete topological classification of one-dimensional non-Hermitian (NH) Hamiltonians with separable bands. A $mathbb{Z}_2$ knot invariant, the global biorthogonal Berry phase $Q$ as the sum of the Wilson loop eigenphases, is proved to be equal to the permutation parity of the NH bands. We show the transition between two phases characterized by distinct knots occur through exceptional points and come in two types. We further develop an algorithm to construct the corresponding tight-binding NH Hamiltonian for any desired knot, and propose a scheme to probe the knot structure via quantum quench. The theory and algorithm are demonstrated by model Hamiltonians that feature for example the Hopf link, the trefoil knot, the figure-8 knot and the Whitehead link.
We study the properties of an ultracold Fermi gas loaded in an optical square lattice and subjected to an external and classical non-Abelian gauge field. We show that this system can be exploited as an optical analogue of relativistic quantum electro dynamics, offering a remarkable route to access the exotic properties of massless Dirac fermions with cold atoms experiments. In particular we show that the underlying Minkowski space-time can also be modified, reaching anisotropic regimes where a remarkable anomalous quantum Hall effect and a squeezed Landau vacuum could be observed.
The Landau-Lifshitz-Gilbert (LLG) equation describes the dynamics of a damped magnetization vector that can be understood as a generalization of Larmor spin precession. The LLG equation cannot be deduced from the Hamiltonian framework, by introducing a coupling to a usual bath, but requires the introduction of additional constraints. It is shown that these constraints can be formulated elegantly and consistently in the framework of dissipative Nambu mechanics. This has many consequences for both the variational principle and for topological aspects of hidden symmetries that control conserved quantities. We particularly study how the damping terms of dissipative Nambu mechanics affect the consistent interaction of magnetic systems with stochastic reservoirs and derive a master equation for the magnetization. The proposals are supported by numerical studies using symplectic integrators that preserve the topological structure of Nambu equations. These results are compared to computations performed by direct sampling of the stochastic equations and by using closure assumptions for the moment equations, deduced from the master equation.
We focus on the confinement of two-dimensional Dirac fermions within the waveguides created by realistic magnetic fields. Understanding of their band structure is of our main concern. We provide easily applicable criteria, mostly depending only on th e asymptotic behavior of the magnetic field, that can guarantee existence or absence of the energy bands and provide valuable insight into the systems where analytical solution is impossible. The general results are employed in specific systems where the waveguide is created by the magnetic field of a set of electric wires or magnetized strips.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا