ﻻ يوجد ملخص باللغة العربية
We generalize Kahler information manifolds of complex-valued signal processing filters by introducing weighted Hardy spaces and generic composite functions of transfer functions. We prove that the Riemannian geometry induced from weighted Hardy norms for composite functions of its transfer function is the Kahler manifold. Additionally, the Kahler potential of the linear system geometry corresponds to the square of the weighted Hardy norms for composite functions of its transfer function. By using the properties of Kahler manifolds, it is possible to compute various geometric objects on the manifolds from arbitrary weight vectors in much simpler ways. Additionally, Kahler information manifolds of signal filters in weighted Hardy spaces can generate various information manifolds such as Kahlerian information geometries from the unweighted complex cepstrum or the unweighted power cepstrum, the geometry of the weighted stationarity filters, and mutual information geometry under the unified framework. We also cover several examples from time series models of which metric tensor, Levi-Civita connection, and Kahler potentials are represented with polylogarithm of poles and zeros from the transfer functions when the weight vectors are in terms of polynomials.
This paper obtains new characterizations of weighted Hardy spaces and certain weighted $BMO$ type spaces via the boundedness of variation operators associated with approximate identities and their commutators, respectively.
We review the information geometry of linear systems and its application to Bayesian inference, and the simplification available in the Kahler manifold case. We find conditions for the information geometry of linear systems to be Kahler, and the rela
Given a complex manifold $X$, any Kahler class defines an affine bundle over $X$, and any Kahler form in the given class defines a totally real embedding of $X$ into this affine bundle. We formulate conditions under which the affine bundles arising t
Suppose $ngeq 3$ and let $B$ be the open unit ball in $mathbb{R}^n$. Let $varphi: Bto B$ be a $C^2$ map whose Jacobian does not change sign, and let $psi$ be a $C^2$ function on $B$. We characterize bounded weighted composition operators $W_{varphi,p
Let $mathcal{D}$ be the class of radial weights on the unit disk which satisfy both forward and reverse doubling conditions. Let $g$ be an analytic function on the unit disk $mathbb{D}$. We characterize bounded and compact Volterra type integration o