ﻻ يوجد ملخص باللغة العربية
Rain removal plays an important role in the restoration of degraded images. Recently, data-driven methods have achieved remarkable success. However, these approaches neglect that the appearance of rain is often accompanied by low light conditions, which will further degrade the image quality. Therefore, it is very indispensable to jointly remove the rain and enhance the light for real-world rain image restoration. In this paper, we aim to address this problem from two aspects. First, we proposed a novel entangled network, namely EMNet, which can remove the rain and enhance illumination in one go. Specifically, two encoder-decoder networks interact complementary information through entanglement structure, and parallel rain removal and illumination enhancement. Considering that the encoder-decoder structure is unreliable in preserving spatial details, we employ a detail recovery network to restore the desired fine texture. Second, we present a new synthetic dataset, namely DarkRain, to boost the development of rain image restoration algorithms in practical scenarios. DarkRain not only contains different degrees of rain, but also considers different lighting conditions, and more realistically simulates the rainfall in the real world. EMNet is extensively evaluated on the proposed benchmark and achieves state-of-the-art results. In addition, after a simple transformation, our method outshines existing methods in both rain removal and low-light image enhancement. The source code and dataset will be made publicly available later.
Retinal images have been widely used by clinicians for early diagnosis of ocular diseases. However, the quality of retinal images is often clinically unsatisfactory due to eye lesions and imperfect imaging process. One of the most challenging quality
Rain streaks might severely degenerate the performance of video/image processing tasks. The investigations on rain removal from video or a single image has thus been attracting much research attention in the field of computer vision and pattern recog
Deep learning (DL) methods have achieved state-of-the-art performance in the task of single image rain removal. Most of current DL architectures, however, are still lack of sufficient interpretability and not fully integrated with physical structures
Images obtained in real-world low-light conditions are not only low in brightness, but they also suffer from many other types of degradation, such as color bias, unknown noise, detail loss and halo artifacts. In this paper, we propose a very fast dee
As a common weather, rain streaks adversely degrade the image quality. Hence, removing rains from an image has become an important issue in the field. To handle such an ill-posed single image deraining task, in this paper, we specifically build a nov