ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Unbiased Visual Emotion Recognition via Causal Intervention

106   0   0.0 ( 0 )
 نشر من قبل Yuedong Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Although much progress has been made in visual emotion recognition, researchers have realized that modern deep networks tend to exploit dataset characteristics to learn spurious statistical associations between the input and the target. Such dataset characteristics are usually treated as dataset bias, which damages the robustness and generalization performance of these recognition systems. In this work, we scrutinize this problem from the perspective of causal inference, where such dataset characteristic is termed as a confounder which misleads the system to learn the spurious correlation. To alleviate the negative effects brought by the dataset bias, we propose a novel Interventional Emotion Recognition Network (IERN) to achieve the backdoor adjustment, which is one fundamental deconfounding technique in causal inference. A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.



قيم البحث

اقرأ أيضاً

297 - Tan Wang , Chang Zhou , Qianru Sun 2021
Attention module does not always help deep models learn causal features that are robust in any confounding context, e.g., a foreground object feature is invariant to different backgrounds. This is because the confounders trick the attention to captur e spurious correlations that benefit the prediction when the training and testing data are IID (identical & independent distribution); while harm the prediction when the data are OOD (out-of-distribution). The sole fundamental solution to learn causal attention is by causal intervention, which requires additional annotations of the confounders, e.g., a dog model is learned within grass+dog and road+dog respectively, so the grass and road contexts will no longer confound the dog recognition. However, such annotation is not only prohibitively expensive, but also inherently problematic, as the confounders are elusive in nature. In this paper, we propose a causal attention module (CaaM) that self-annotates the confounders in unsupervised fashion. In particular, multiple CaaMs can be stacked and integrated in conventional attention CNN and self-attention Vision Transformer. In OOD settings, deep models with CaaM outperform those without it significantly; even in IID settings, the attention localization is also improved by CaaM, showing a great potential in applications that require robust visual saliency. Codes are available at url{https://github.com/Wangt-CN/CaaM}.
Adversarial training is the de facto most promising defense against adversarial examples. Yet, its passive nature inevitably prevents it from being immune to unknown attackers. To achieve a proactive defense, we need a more fundamental understanding of adversarial examples, beyond the popular bounded threat model. In this paper, we provide a causal viewpoint of adversarial vulnerability: the cause is the confounder ubiquitously existing in learning, where attackers are precisely exploiting the confounding effect. Therefore, a fundamental solution for adversarial robustness is causal intervention. As the confounder is unobserved in general, we propose to use the instrumental variable that achieves intervention without the need for confounder observation. We term our robust training method as Causal intervention by instrumental Variable (CiiV). It has a differentiable retinotopic sampling layer and a consistency loss, which is stable and guaranteed not to suffer from gradient obfuscation. Extensive experiments on a wide spectrum of attackers and settings applied in MNIST, CIFAR-10, and mini-ImageNet datasets empirically demonstrate that CiiV is robust to adaptive attacks.
The recent emerged weakly supervised object localization (WSOL) methods can learn to localize an object in the image only using image-level labels. Previous works endeavor to perceive the interval objects from the small and sparse discriminative atte ntion map, yet ignoring the co-occurrence confounder (e.g., bird and sky), which makes the model inspection (e.g., CAM) hard to distinguish between the object and context. In this paper, we make an early attempt to tackle this challenge via causal intervention (CI). Our proposed method, dubbed CI-CAM, explores the causalities among images, contexts, and categories to eliminate the biased co-occurrence in the class activation maps thus improving the accuracy of object localization. Extensive experiments on several benchmarks demonstrate the effectiveness of CI-CAM in learning the clear object boundaries from confounding contexts. Particularly, in CUB-200-2011 which severely suffers from the co-occurrence confounder, CI-CAM significantly outperforms the traditional CAM-based baseline (58.39% vs 52.4% in top-1 localization accuracy). While in more general scenarios such as ImageNet, CI-CAM can also perform on par with the state of the arts.
Distant supervision tackles the data bottleneck in NER by automatically generating training instances via dictionary matching. Unfortunately, the learning of DS-NER is severely dictionary-biased, which suffers from spurious correlations and therefore undermines the effectiveness and the robustness of the learned models. In this paper, we fundamentally explain the dictionary bias via a Structural Causal Model (SCM), categorize the bias into intra-dictionary and inter-dictionary biases, and identify their causes. Based on the SCM, we learn de-biased DS-NER via causal interventions. For intra-dictionary bias, we conduct backdoor adjustment to remove the spurious correlations introduced by the dictionary confounder. For inter-dictionary bias, we propose a causal invariance regularizer which will make DS-NER models more robust to the perturbation of dictionaries. Experiments on four datasets and three DS-NER models show that our method can significantly improve the performance of DS-NER.
This paper focuses on two key problems for audio-visual emotion recognition in the video. One is the audio and visual streams temporal alignment for feature level fusion. The other one is locating and re-weighting the perception attentions in the who le audio-visual stream for better recognition. The Long Short Term Memory Recurrent Neural Network (LSTM-RNN) is employed as the main classification architecture. Firstly, soft attention mechanism aligns the audio and visual streams. Secondly, seven emotion embedding vectors, which are corresponding to each classification emotion type, are added to locate the perception attentions. The locating and re-weighting process is also based on the soft attention mechanism. The experiment results on EmotiW2015 dataset and the qualitative analysis show the efficiency of the proposed two techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا