ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantifying the Rarity of the Local Super-Volume

108   0   0.0 ( 0 )
 نشر من قبل Stephen Stopyra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the extent to which the number of clusters of mass exceeding $10^{15},M_{odot},h^{-1}$ within the local super-volume ($<135mathrm{,Mpc}h^{-1}$) is compatible with the standard $Lambda$CDM cosmological model. Depending on the mass estimator used, we find that the observed number $N$ of such massive structures can vary between $0$ and $5$. Adopting $N=5$ yields $Lambda$CDM likelihoods as low as $2.4times 10^{-3}$ (with $sigma_8=0.81$) or $3.8times 10^{-5}$ (with $sigma_8=0.74$). However, at the other extreme ($N=0$), the likelihood is of order unity. Thus, while potentially very powerful, this method is currently limited by systematic uncertainties in cluster mass estimates. This motivates efforts to reduce these systematics with additional observations and improved modelling.


قيم البحث

اقرأ أيضاً

Using infrared photometry from the Spitzer Space Telescope, we perform the first inventory of aromatic feature emission (AFE, but also commonly referred to as PAH emission) for a statistically complete sample of star-forming galaxies in the local vol ume. The photometric methodology involved is calibrated and demonstrated to recover the aromatic fraction of the IRAC 8 micron flux with a standard deviation of 6% for a training set of 40 SINGS galaxies (ranging from stellar to dust dominated) with both suitable mid-infrared Spitzer IRS spectra and equivalent photometry. A potential factor of two improvement could be realized with suitable 5.5 and 10 micron photometry, such as what may be provided in the future by JWST. The resulting technique is then applied to mid-infrared photometry for the 258 galaxies from the Local Volume Legacy (LVL) survey, a large sample dominated in number by low-luminosity dwarf galaxies for which obtaining comparable mid-infrared spectroscopy is not feasible. We find the total LVL luminosity due to five strong aromatic features in the 8 micron complex to be 2.47E10 solar luminosities with a mean volume density of 8.8E6 solar luminosities per cubic Megaparsec. Twenty-four of the LVL galaxies, corresponding to a luminosity cut at M = -18.22 in the B band, account for 90% of the aromatic luminosity. Using oxygen abundances compiled from the literature for 129 of the 258 LVL galaxies, we find a correlation between metallicity and the aromatic to total infrared emission ratio but not the aromatic to total 8 micron dust emission ratio. A possible explanation is that metallicity plays a role in the abundance of aromatic molecules relative to the total dust content, but other factors such as star formation and/or the local radiation field affect the excitation of those molecules.
We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant and age of the Universe) for the local universe and compare them with local measurements of the same quantities. We propose a way to quanti fy whether cosmological parameters constraints from two different experiments are in tension or not. Our statistic, T, is an evidence ratio and therefore can be interpreted with the widely used Jeffreys scale. We find that in the framework of the LCDM model, the Planck inferred two dimensional, joint, posterior distribution for the Hubble constant and age of the Universe is in strong tension with the local measurements; the odds being ~ 1:50. We explore several possibilities for explaining this tension and examine the consequences both in terms of unknown errors and deviations from the LCDM model. In some one-parameter LCDM model extensions, tension is reduced whereas in other extensions, tension is instead increased. In particular, small total neutrino masses are favored and a total neutrino mass above 0.15 eV makes the tension highly significant (odds ~ 1:150). A consequence of accepting this interpretation of the tension is that the degenerate neutrino hierarchy is highly disfavoured by cosmological data and the direct hierarchy is slightly favored over the inverse.
The survey description and the near-, mid-, and far-infrared flux properties are presented for the 258 galaxies in the Local Volume Legacy (LVL). LVL is a Spitzer Space Telescope legacy program that surveys the local universe out to 11 Mpc, built upo n a foundation of ultraviolet, H-alpha, and HST imaging from 11HUGS (11 Mpc H-alpha and Ultraviolet Galaxy Survey) and ANGST (ACS Nearby Galaxy Survey Treasury). LVL covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies with improved sampling of the low-luminosity galaxy population. The collection of LVL galaxies shows a large spread in mid-infrared colors, likely due to the conspicuous deficiency of 8um PAH emission from low-metallicity, low-luminosity galaxies. Conversely, the far-infrared emission tightly tracks the total infrared emission, with a dispersion in their flux ratio of only 0.1 dex. In terms of the relation between infrared-to-ultraviolet ratio and ultraviolet spectral slope, the LVL sample shows redder colors and/or lower infrared-to-ultraviolet ratios than starburst galaxies, suggesting that reprocessing by dust is less important in the lower mass systems that dominate the LVL sample. Comparisons with theoretical models suggest that the amplitude of deviations from the relation found for starburst galaxies correlates with the age of the stellar populations that dominate the ultraviolet/optical luminosities.
The `Local Volume HI Survey (LVHIS) comprises deep HI spectral line and 20-cm radio continuum observations of 82 nearby, gas-rich galaxies, supplemented by multi-wavelength images. Our sample consists of all galaxies with Local Group velocities v_LG < 550 km/s or distances D < 10 Mpc that are detected in the HI Parkes All Sky Survey (HIPASS). Using full synthesis observations in at least three configurations of the Australia Telescope Compact Array (ATCA), we obtain detailed HI maps for a complete sample of gas-rich galaxies with Dec < -30 deg. Here we present a comprehensive LVHIS Galaxy Atlas, including the overall gas distribution, mean velocity field, velocity dispersion, and position-velocity diagrams, together with a homogeneous set of measured and derived galaxy properties. Our primary goal is to investigate the HI morphologies, kinematics, and environment at high resolution and sensitivity. LVHIS galaxies represent a wide range of morphologies and sizes; our measured HI masses range from ~10^7 to 10^10 Msun, based on independent distance estimates. The LVHIS Galaxy Atlas (including FITS files) is available on-line.
We present an investigation of the horizon and its effect on global 21-cm observations and analysis. We find that the horizon cannot be ignored when modeling low frequency observations. Even if the sky and antenna beam are known exactly, forward mode ls cannot fully describe the beam-weighted foreground component without accurate knowledge of the horizon. When fitting data to extract the 21-cm signal, a single time-averaged spectrum or independent multi-spectrum fits may be able to compensate for the bias imposed by the horizon. However, these types of fits lack constraining power on the 21-cm signal, leading to large uncertainties on the signal extraction, in some cases larger in magnitude than the 21-cm signal itself. A significant decrease in signal uncertainty can be achieved by performing multi-spectrum fits in which the spectra are modeled simultaneously with common parameters. The cost of this greatly increased constraining power, however, is that the time dependence of the horizons effect, which is more complex than its spectral dependence, must be precisely modeled to achieve a good fit. To aid in modeling the horizon, we present an algorithm and Python package for calculating the horizon profile from a given observation site using elevation data. We also address several practical concerns such as pixelization error, uncertainty in the horizon profile, and foreground obstructions such as surrounding buildings and vegetation. We demonstrate that our training set-based analysis pipeline can account for all of these factors to model the horizon well enough to precisely extract the 21-cm signal from simulated observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا