ﻻ يوجد ملخص باللغة العربية
We characterise the quintic (i.e. 5-regular) multigraphs with the property that every edge lies in a triangle. Such a graph is either from a set of small graphs or is formed by adding a perfect matching to a line graph of a cubic graph as double edges, or can be reduced by a sequence of operations to one of these graphs.
Considering regular graphs with every edge in a triangle we prove lower bounds for the number of triangles in such graphs. For r-regular graphs with r <= 5 we exhibit families of graphs with exactly that number of triangles and then classify all such
For all $nge 9$, we show that the only triangle-free graphs on $n$ vertices maximizing the number $5$-cycles are balanced blow-ups of a 5-cycle. This completely resolves a conjecture by ErdH{o}s, and extends results by Grzesik and Hatami, Hladky, Kr{
Switches are operations which make local changes to the edges of a graph, usually with the aim of preserving the vertex degrees. We study a restricted set of switches, called triangle switches. Each triangle switch creates or deletes at least one tri
The rank of a graph is defined to be the rank of its adjacency matrix. A graph is called reduced if it has no isolated vertices and no two vertices with the same set of neighbors. We determine the maximum order of reduced triangle-free graphs with a
Given a graph $G=(V,E)$ whose vertices have been properly coloured, we say that a path in $G$ is colourful if no two vertices in the path have the same colour. It is a corollary of the Gallai-Roy-Vitaver Theorem that every properly coloured graph con