ﻻ يوجد ملخص باللغة العربية
We discuss the realization of a magnonic version of the STImulated-Raman-Adiabatic-Passage (m-STIRAP) mechanism using micromagnetic simulations. We consider the propagation of magnons in curved magnonic directional couplers. Our results demonstrate that quantum-classical analogy phenomena are accessible in magnonics. Specifically, the inherent advantages of the STIRAP mechanism, associated with dark states, can now be utilized in magnonics. Applications of this effect for future magnonic device functionalities and designs are discussed.
We propose a technique which produces nearly complete ionization of the population of a discrete state coupled to a continuum by a two-photon transition via a lossy intermediate state whose lifetime is much shorter than the interaction duration. We s
We present a general formalism for describing stimulated Raman adiabatic passage in a multi-level atom. The atom is assumed to have two ground state manifolds a and b and an excited state manifold e, and the adiabatic passage is carried out by resona
We present an analytic description of the effects of dephasing processes on stimulated Raman adiabatic passage in a tripod quantum system. To this end, we develop an effective two-level model. Our analysis makes use of the adiabatic approximation in
The theory of stimulated Raman adiabatic passage in a three-level Lambda-scheme of the interaction of an atom or molecule with light, which takes the nonadiabatic processes at the beginning and the end of light pulses into account, is developed.
We propose a method to improve the stimulated Raman adiabatic passage (STIRAP) via dissipative quantum dynamics, taking into account the dephasing effects. Fast and robust population transfer can be obtained with the scheme by the designed pulses and