ﻻ يوجد ملخص باللغة العربية
Reversible covalent kinase inhibitors (RCKIs) are a class of novel kinase inhibitors attracting increasing attention because they simultaneously show the selectivity of covalent kinase inhibitors, yet avoid permanent protein-modification-induced adverse effects. Over the last decade, RCKIs have been reported to target different kinases, including atypical kinases. Currently, three RCKIs are undergoing clinical trials to treat specific diseases, for example, Pemphigus, an autoimmune disorder. In this perspective, first, RCKIs are systematically summarized, including characteristics of electrophilic groups, chemical scaffolds, nucleophilic residues, and binding modes. Second, we provide insights into privileged electrophiles, the distribution of nucleophiles and hence effective design strategies for RCKIs. Finally, we provide a brief perspective on future design strategies for RCKIs, including those that target proteins other than kinases.
Cells have evolved a metabolic control of DNA replication to respond to a wide range of nutritional conditions. Accumulating data suggest that this poorly understood control depends, at least in part, on Central Carbon Metabolism (CCM). In Bacillus s
We show that weakly reversible mass-action systems can have a continuum of positive steady states, coming from the zeroes of a multivariate polynomial. Moreover, the same is true of systems whose underlying reaction network is reversible and has a si
We used machine learning methods to predict NaV1.7 inhibitors and found the model RF-CDK that performed best on the imbalanced dataset. Using the RF-CDK model for screening drugs, we got effective compounds K1. We use the cell patch clamp method to v
Patients infected with SARS-CoV-2 show a wide spectrum of clinical manifestations ranging from mild febrile illness and cough up to acute respiratory distress syndrome, multiple organ failure and death. Data from patients with severe clinical manifes
Our models for detecting the effect of adaptation on population genomic diversity are often predicated on a single newly arisen mutation sweeping rapidly to fixation. However, a population can also adapt to a new situation by multiple mutations of si