ترغب بنشر مسار تعليمي؟ اضغط هنا

Planar graphene-NbSe$_2$ Josephson junctions in a parallel magnetic field

82   0   0.0 ( 0 )
 نشر من قبل Hadar Steinberg
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thin transition metal dichalcogenides sustain superconductivity at large in-plane magnetic fields due to Ising spin-orbit protection, which locks their spins in an out-of-plane orientation. Here we use thin NbSe$_2$ as superconducting electrodes laterally coupled to graphene, making a planar, all van der Waals two-dimensional Josephson junction (2DJJ). We map out the behavior of these novel devices with respect to temperature, gate voltage, and both out-of-plane and in-plane magnetic fields. Notably, the 2DJJs sustain supercurrent up to $H_parallel$ as high as 8.5 T, where the Zeeman energy $E_Z$ rivals the Thouless energy $E_{Th}$, a regime hitherto inaccessible in graphene. As the parallel magnetic field $H_parallel$ increases, the 2DJJs critical current is suppressed and in a few cases undergoes suppression and recovery. We explore the behavior in $H_parallel$ by considering theoretically two effects: a 0-$pi$ transition induced by tuning of the Zeeman energy and the unique effect of ripples in an atomically thin layer which create a small spatially varying perpendicular component of the field. The 2DJJs have potential utility as flexible probes for two-dimensional superconductivity in a variety of materials and introduce high $H_parallel$ as a newly accessible experimental knob.



قيم البحث

اقرأ أيضاً

Josephson junctions based on three-dimensional topological insulators offer intriguing possibilities to realize unconventional $p$-wave pairing and Majorana modes. Here, we provide a detailed study of the effect of a uniform magnetization in the norm al region: We show how the interplay between the spin-momentum locking of the topological insulator and an in-plane magnetization parallel to the direction of phase bias leads to an asymmetry of the Andreev spectrum with respect to transverse momenta. If sufficiently large, this asymmetry induces a transition from a regime of gapless, counterpropagating Majorana modes to a regime with unprotected modes that are unidirectional at small transverse momenta. Intriguingly, the magnetization-induced asymmetry of the Andreev spectrum also gives rise to a Josephson Hall effect, that is, the appearance of a transverse Josephson current. The amplitude and current phase relation of the Josephson Hall current are studied in detail. In particular, we show how magnetic control and gating of the normal region can enable sizable Josephson Hall currents compared to the longitudinal Josephson current. Finally, we also propose in-plane magnetic fields as an alternative to the magnetization in the normal region and discuss how the planar Josephson Hall effect could be observed in experiments.
We have theoretically studied the supercurrent profiles in three-dimensional normal metal and ferromagnetic Josephson configurations, where the magnitude of the superconducting gaps in the superconducting leads are unequal, i.e., $Delta_1 eq Delta_2$ , creating asymmetric $S_1NS_2$ and $S_1FS_2$ systems. Our results reveal that by increasing the ratio of the superconducting gaps $Delta_2/Delta_1$, the critical supercurrent in a ballistic $S_1NS_2$ system can be enhanced by more than $100%$, and reaches a saturation point, or decays away, depending on the junction thickness, magnetization strength, and chemical potential. The total critical current in a diffusive $S_1NS_2$ system was found to be enhanced by more than $50%$ parabolically, and reaches saturation by increasing one of the superconducting gaps. In a uniform ferromagnetic junction, the supercurrent undergoes reversal by increasing $Delta_2/Delta_1>1$. Through decomposing the total supercurrent into its supergap and subgap components, our results illustrate their crucial relative contributions to the Josephson current flow. It was found that the competition of subgap and supergap currents in a $S_1FS_2$ junction results in the emergence of second harmonics in the current-phase relation. In contrast to a diffusive asymmetric Josephson configuration, the behavior of the supercurrent in a ballistic system with $Delta_2/Delta_1=1$ can be properly described by the subgap current component only, in a wide range of parameter sets, including Fermi level mismatch, magnetization strength, and junction thickness. Interestingly, when $Delta_2/Delta_1>1$, our results have found multiple parameter sets where the total supercurrent is driven by the supergap component. Therefore, our comprehensive study highlights the importance of subgap and supergap supercurrent components in both the ballistic and diffusive regimes.
We present results on all-MgB2 tunnel junctions, where the tunnel barrier is deposited MgO or native-oxide of base electrode. For the junctions with MgO, the hysteretic I-V curve resembles a conventional underdamped Josephson junction characteristic with critical current-resistance product nearly independent of the junction area. The dependence of the critical current with temperature up to 20 K agrees with the [Ambegaokar and Baratoff, Phys. Rev. Lett. 10, 486 (1963)] expression. For the junctions with native-oxide, conductance at low bias exhibits subgap features while at high bias reveals thick barriers. As a result no supercurrent was observed in the latter, despite the presence of superconducting-gaps to over 30 K.
We combine electron beam lithography and masked anodization of epitaxial aluminium to define tunnel junctions via selective oxidation, alleviating the need for wet-etch processing or direct deposition of dielectric materials. Applying this technique to define Josephson junctions in proximity induced superconducting Al-InAs heterostructures, we observe multiple Andreev reflections in transport experiments, indicative of a high quality junction. We further compare the mobility and density of Hall-bars defined via wet etching and anodization. These results may find utility in uncovering new fabrication approaches to junction-based qubit platforms.
Graphene on silicon carbide (SiC) has proved to be highly successful in Hall conductance quantization for its homogeneity at the centimetre scale. Robust Josephson coupling has been measured in co-planar diffusive Al/monololayer graphene/Al junctions . Graphene on SiC substrates is a concrete candidate to provide scalability of hybrid Josephson graphene/superconductor devices, giving also promise of ballistic propagation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا