ترغب بنشر مسار تعليمي؟ اضغط هنا

A disk and no signatures of tidal distortion in the galaxy lacking dark matter NGC 1052-DF2

77   0   0.0 ( 0 )
 نشر من قبل Mireia Montes
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Mireia Montes




اسأل ChatGPT حول البحث

Using ultra-deep imaging ($mu_g = 30.4$ mag/arcsec$^2$; 3$sigma$, 10x10), we probed the surroundings of the first galaxy lacking dark matter KKS2000[04] (NGC 1052-DF2). Signs of tidal stripping in this galaxy would explain its claimed low content of dark matter. However, we find no evidence of tidal tails. In fact, the galaxy remains undisturbed down to a radial distance of 80 arcsec. This radial distance triples previous spatial explorations of the stellar distribution of this galaxy. In addition, the distribution of its globular clusters (GCs) is not extended in relation to the bulk of the galaxy (the radius containing half of the GCs is 21 arcsec). We also found that the surface brightness radial profiles of this galaxy in the g and r bands decline exponentially from 35 to 80 arcsec. That, together with a constant ellipticity and position angle in the outer parts of the galaxy strongly suggests the presence of a low-inclination disk. This is consistent with the evidence of rotation found for this object. This finding implies that the dynamical mass of this galaxy is a factor of 2 higher than previously reported, bringing the dark matter content of this galaxy in line with galaxies of similar stellar mass.

قيم البحث

اقرأ أيضاً

The NGC 1052 group, and in particular the discovery of two ultra diffuse galaxies with very low internal velocity dispersions, has been the subject of much attention recently. Here we present radial velocities for a sample of 77 globular clusters ass ociated with NGC 1052 obtained on the Keck telescope. Their mean velocity and velocity dispersion are consistent with that of the host galaxy. Using a simple tracer mass estimator, we infer the enclosed dynamical mass and dark matter fraction of NGC 1052. Extrapolating our measurements with an NFW mass profile we infer a total halo mass of 6.2 ($pm$0.2) $times$ 10$^{12}$ M$_{odot}$. This mass is fully consistent with that expected from the stellar mass--halo mass relation, suggesting that NGC 1052 has a normal dark matter halo mass (i.e. it is not deficient in dark matter in contrast to two ultra diffuse galaxies in the group). We present a phase space diagram showing the galaxies that lie within the projected virial radius (390 kpc) of NGC 1052. Finally, we briefly discuss the two dark matter deficient galaxies (NGC 1052--DF and DF4) and consider whether MOND can account for their low observed internal velocity dispersions.
Recently van Dokkum et al. (2018b) reported that the galaxy NGC 1052-DF2 (DF2) lacks dark matter if located at $20$ Mpc from Earth. In contrast, DF2 is a dark-matter-dominated dwarf galaxy with a normal globular cluster population if it has a much sh orter distance near $10$ Mpc. However, DF2 then has a high peculiar velocity wrt. the cosmic microwave background of $886$ $rm{km,s^{-1}}$, which differs from that of the Local Group (LG) velocity vector by $1298$ $rm{km,s^{-1}}$ with an angle of $117 , ^{circ}$. Taking into account the dynamical $M/L$ ratio, the stellar mass, half-light radius, peculiar velocity, motion relative to the LG, and the luminosities of the globular clusters, we show that the probability of finding DF2-like galaxies in the lambda cold dark matter ($Lambda$CDM) TNG100-1 simulation is at most $1.0times10^{-4}$ at $11.5$ Mpc and is $4.8times10^{-7}$ at $20.0$ Mpc. At $11.5$ Mpc, the peculiar velocity is in significant tension with the TNG100-1, TNG300-1, and Millennium simulations, but occurs naturally in a Milgromian cosmology. At $20.0$ Mpc, the unusual globular cluster population would challenge any cosmological model. Estimating that precise measurements of the internal velocity dispersion, stellar mass, and distance exist for $100$ galaxies, DF2 is in $2.6sigma$ ($11.5$ Mpc) and $4.1sigma$ ($20.0$ Mpc) tension with standard cosmology. Adopting the former distance for DF2 and assuming that NGC 1052-DF4 is at $20.0$ Mpc, the existence of both is in tension at $geq4.8sigma$ with the $Lambda$CDM model. If both galaxies are at $20.0$ Mpc the $Lambda$CDM cosmology has to be rejected by $geq5.8sigma$.
NGC 1052-DF2, an ultra diffuse galaxy (UDG), has been the subject of intense debate. Its alleged absence of dark matter, and the brightness and number excess of its globular clusters (GCs) at an initially assumed distance of 20Mpc, suggested a new fo rmation channel for UDGs. We present the first systematic spectroscopic analysis of both the stellar body and the GCs (six of which were previously known, and one newly confirmed member) of this galaxy using MUSE@VLT. Even though NGC 1052-DF2 does not show any spatially extended emission lines we report the discovery of three planetary nebulae (PNe). We conduct full spectral fitting on the UDG and the stacked spectra of all GCs. The UDGs stellar population is old, 8.9$pm$1.5 Gyr, metal-poor, with [M/H] = $-$1.07$pm$0.12 with little or no $alpha$-enrichment. The stacked spectrum of all GCs indicates a similar age of 8.9$pm$1.8 Gyr, but lower metallicity, with [M/H] = $-$1.63$pm$0.09, and similarly low $alpha$-enrichment. There is no evidence for a variation of age and metallicity in the GC population with the available spectra. The significantly more metal-rich stellar body with respect to its associated GCs, the age of the population, its metallicity and alpha enrichment, are all in line with other dwarf galaxies. NGC 1052-DF2 thus falls on the same empirical mass-metallicity relation as other dwarfs, for the full distance range assumed in the literature. We find that both debated distance estimates (13 and 20 Mpc) are similarly likely, given the three discovered PNe.
101 - Andrea V. Macci`o 2020
We use hydrodynamical cosmological simulations to show that it is possible to create, via tidal interactions, galaxies lacking dark matter in a dark matter dominated universe. We select dwarf galaxies from the NIHAO project, obtained in the standard Cold Dark Matter model and use them as initial conditions for simulations of satellite-central interactions. After just one pericentric passage on an orbit with a strong radial component, NIHAO dwarf galaxies can lose up to 80 per~cent of their dark matter content, but, most interestingly, their central ($approx 8$~kpc) dark matter to stellar ratio changes from a value of ${sim}25$, as expected from numerical simulations and abundance matching techniques, to roughly unity as reported for NGC1052-DF2 and NGC1054-DF4. The stellar velocity dispersion drops from ${sim}30$ ${rm km,s^{-1}}$ before infall to values as low as $6pm 2$~ ${rm km,s^{-1}}$. These, and the half light radius around 3 kpc, are in good agreement with observations from van Dokkum and collaborators. Our study shows that it is possible to create a galaxy without dark matter starting from typical dwarf galaxies formed in a dark matter dominated universe, provided they live in a dense environment.
(Abridged) Any viable cosmological model in which galaxies interact predicts the existence of primordial and tidal dwarf galaxies (TDGs). In particular, in the standard model of cosmology ($Lambda$CDM), according to the dual dwarf galaxy theorem, the re must exist both primordial dark matter-dominated and dark matter-free TDGs with different radii. We study the frequency, evolution, and properties of TDGs in a $Lambda$CDM cosmology. We use the hydrodynamical cosmological Illustris-1 simulation to identify tidal dwarf galaxy candidates (TDGCs) and study their present-day physical properties. We also present movies on the formation of a few galaxies lacking dark matter, confirming their tidal dwarf nature. TDGCs can however also be formed via other mechanisms, such as from ram-pressure-stripped material or, speculatively, from cold-accreted gas. We find 97 TDGCs with $M_{stellar} >5 times 10^7 M_odot$ at redshift $z = 0$, corresponding to a co-moving number density of $2.3 times 10^{-4} h^3 cMpc^{-3}$. The most massive TDGC has $M_{total} = 3.1 times 10^9 M_odot$, comparable to that of the Large Magellanic Cloud. TDGCs are phase-space-correlated, reach high metallicities, and are typically younger than dark matter-rich dwarf galaxies. We report for the first time the verification of the dual dwarf theorem in a self-consistent $Lambda$CDM cosmological simulation. Simulated TDGCs and dark matter-dominated galaxies populate different regions in the radius-mass diagram in disagreement with observations of early-type galaxies. The dark matter-poor galaxies formed in Illustris-1 have comparable radii to observed dwarf galaxies and to TDGs formed in other galaxy-encounter simulations. In Illustris-1, only 0.17% of all selected galaxies with $M_{stellar} = 5 times 10^7-10^9 M_odot$ are TDGCs or dark matter-poor dwarf galaxies. The occurrence of NGC 1052-DF2-type objects is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا