ﻻ يوجد ملخص باللغة العربية
With the rise of the big data phenomenon in recent years, data is coming in many different complex forms. One example of this is multi-way data that come in the form of higher-order tensors such as coloured images and movie clips. Although there has been a recent rise in models for looking at the simple case of three-way data in the form of matrices, there is a relative paucity of higher-order tensor variate methods. The most common tensor distribution in the literature is the tensor variate normal distribution; however, its use can be problematic if the data exhibit skewness or outliers. Herein, we develop four skewed tensor variate distributions which to our knowledge are the first skewed tensor distributions to be proposed in the literature, and are able to parameterize both skewness and tail weight. Properties and parameter estimation are discussed, and real and simulated data are used for illustration.
In this article, we propose new Bayesian methods for selecting and estimating a sparse coefficient vector for skewed heteroscedastic response. Our novel Bayesian procedures effectively estimate the median and other quantile functions, accommodate non
In this paper, we propose to obtain the skewed version of a unimodal symmetric density using a skewing mechanism that is not based on a cumulative distribution function. Then we disturb the unimodality of the resulting skewed density. In order to int
In this paper, we present a Weibull link (skewed) model for categorical response data arising from binomial as well as multinomial model. We show that, for such types of categorical data, the most commonly used models (logit, probit and complementary
Time series of observables measured from complex systems do often exhibit non-normal statistics, their statistical distributions (PDFs) are not gaussian and often skewed, with roughly exponential tails. Departure from gaussianity is related to the in
Researchers often impute continuous variables under an assumption of normality, yet many incomplete variables are skewed. We find that imputing skewed continuous variables under a normal model can lead to bias; the bias is usually mild for popular es