ﻻ يوجد ملخص باللغة العربية
We assess the accuracy of Bayesian polynomial extrapolations from small parameter values, x, to large values of x. We consider a set of polynomials of fixed order, intended as a proxy for a fixed-order effective field theory (EFT) description of data. We employ Bayesian Model Averaging (BMA) to combine results from different order polynomials (EFT orders). Our study considers two toy problems where the underlying function used to generate data sets is known. We use Bayesian parameter estimation to extract the polynomial coefficients that describe these data at low x. A naturalness prior is imposed on the coefficients, so that they are O(1). We Bayesian-Model-Average different polynomial degrees by weighting each according to its Bayesian evidence and compare the predictive performance of this Bayesian Model Average with that of the individual polynomials. The credibility intervals on the BMA forecast have the stated coverage properties more consistently than does the highest evidence polynomial, though BMA does not necessarily outperform every polynomial.
We consider the Jeffreys-Lindley paradox from an objective Bayesian perspective by attempting to find priors representing complete indifference to sample size in the problem. This means that we ensure that the prior for the unknown mean and the prior
We describe the Bayesian Analysis of Nuclear Dynamics (BAND) framework, a cyberinfrastructure that we are developing which will unify the treatment of nuclear models, experimental data, and associated uncertainties. We overview the statistical princi
The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the eLISA concept. The data analysis team has de
Model averaging considers the model uncertainty and is an alternative to model selection. In this paper, we propose a frequentist model averaging estimator for composite quantile regressions. In recent years, research on these topics has been added a
We present the Sequential Ensemble Transform (SET) method, an approach for generating approximate samples from a Bayesian posterior distribution. The method explores the posterior distribution by solving a sequence of discrete optimal transport probl