ترغب بنشر مسار تعليمي؟ اضغط هنا

Crystal field effects in the zig-zag chain compound SrTm$_2$O$_4$

316   0   0.0 ( 0 )
 نشر من قبل Abhijit Bhat Kademane
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SrTm$_2$O$_4$ has been investigated using heat capacity, magnetic susceptibility, magnetization in pulsed fields, and inelastic neutron scattering measurements. These results show that the system is highly anisotropic, has gapped low-energy dispersing magnetic excitations, and remains in a paramagnetic state down to 2K. Two theoretical crystal field models were used to describe the single-ion properties of SrTm$_2$O$_4$without any optimization procedures; a standard point-charge model and a Density Functional Theory (DFT) based model that uses Wannier functions. The DFT model was found to better describe the system at low energy by predicting a singlet ground state for one Tm site and a doublet for the second Tm site and anisotropy of second site Tm dominating the anisotropy of the system. Additionally, muon spin rotation/relaxation ($mu^+$psr) spectra reveal oscillations, typically a sign of long-range magnetic order. We attribute these observations to lattice distortion induced by muon implantation, causing renormalization of the gap size.



قيم البحث

اقرأ أيضاً

188 - Yogesh Singh , R. W. McCallum , 2007
Static magnetic susceptibility chi, ac susceptibility chi_{ac} and specific heat C versus temperature T measurements on polycrystalline samples of In2VO5 and chi and C versus T measurements on the isostructural, nonmagnetic compound In2TiO5 are repor ted. A Curie-Wiess fit to the chi(T) data above 175 K for In2VO5 indicates ferromagnetic exchange between V^{4+} (S = 1/2) moments. Below 150 K the chi(T) data deviate from the Curie-Weiss behavior but there is no signature of any long range magnetic order down to 1.8 K. There is a cusp at 2.8 K in the zero field cooled (ZFC) chi(T) data measured in a magnetic field of 100 Oe and the ZFC and field cooled (FC) data show a bifurcation below this temperature. The frequency dependence of the chi_{ac}(T) data indicate that below 3 K the system is in a spin-glass state. The difference Delta C between the heat capacity of In2VO5 and In2TiO5 shows a broad anomaly peaked at 130 K. The entropy upto 300 K is more than what is expected for S = 1/2 moments. The anomaly in Delta C and the extra entropy suggests that there may be a structural change below 130 K in In2VO5.
Theoretical studies have predicted the existence of topological magnons in honeycomb compounds with zig-zag antiferromagnetic (AFM) order. Here we report the discovery of zig-zag AFM order in the layered and non-centrosymmetric honeycomb nickelate Ni $_2$Mo$_3$O$_8$ through a combination of magnetization, specific heat, x-ray and neutron diffraction and electron paramagnetic resonance measurements. It is the first example of such order in an integer-spin non-centrosymmetric structure ($P$$_6$3$mc$). Further, each of the two distinct sites of the bipartite honeycomb lattice has a unique crystal field environment, octahedral and tetrahedral Ni$^{2+}$ respectively, enabling independent substitution on each sublattice. Replacement of Ni by Mg on the octahedral site suppresses the long range magnetic order and results in a weakly ferromagnetic state. Conversely, substitution of Fe for Ni enhances the AFM ordering temperature. Thus Ni$_2$Mo$_3$O$_8$ provides a platform on which to explore the rich physics of $S = 1$ on the honeycomb in the presence of competing magnetic interactions with a non-centrosymmetric, formally piezeo-polar, crystal structure.
136 - W. Tao , L. M. Chen , X. M. Wang 2013
The bulk single crystals of $S = 1$ chain compound Ni(C$_3$H$_{10}$N$_2$)$_2$NO$_2$ClO$_4$ are grown by using a slow evaporation method at a constant temperature and a slow cooling method. It is found that the optimum condition of growing large cryst als is via slow evaporation at 25 $^circ$C using 0.015 mol Ni(ClO$_4$)$_2$$cdot$6H$_2$O, 0.015 mol NaNO$_2$, and 0.03 mol 1,3-propanediamine liquid dissolved into 30 ml aqueous solvent. High-quality crystals with size up to $18 times 7.5 times 5$ mm$^3$ are obtained. The single crystals are characterized by measurements of x-ray diffraction, magnetic susceptibility, specific heat and thermal conductivity. The susceptibilities along three crystallographic axes are found to exhibit broad peaks at $sim 55$ K, and then decrease abruptly to zero at lower temperatures, which is characteristic of a Haldane chain system. The specific heat and the thermal conductivity along the $c$ axis can be attributed to the simple phononic contribution and are analyzed using the Debye approximation.
We demonstrate that the onset of complex spin orders in ACr$_2$O$_4$ spinels with magnetic A$=$Co, Fe and Cu ions lowers the lattice symmetry. This is clearly indicated by the emergence of anisotropic lattice dynamics -- as evidenced by the pronounce d phonon splittings -- even when experiments probing static distortions fail. We show that the crystal symmetry in the magnetic phase is reduced from tetragonal to orthorhombic for FeCr$_2$O$_4$ and CuCr$_2$O$_4$ with Jahn-Teller active A-site ions. The conical spin structure in FeCr$_2$O$_4$ is also manifested in the phonon frequencies. In contrast, the multiferroic CoCr$_2$O$_4$ with no orbital degrees of freedom remains nearly cubic in its ground state.
Pr$_2$Zr$_2$O$_7$ is a pyrochlore quantum spin-ice candidate. Using Raman scattering spectroscopy we probe crystal electric field excitations of Pr$^{3+}$, and demonstrate the importance of their interactions with the lattice. We identify a vibronic interaction with a phonon that leads to a splitting of a doublet crystal field excitation at around 55~meV. We also probe a splitting of the non-Kramers ground state doublet of Pr$^{3+}$ by observing a double line of the excitations to the first excited singlet state $E^0_g rightarrow A_{1g}$. We show that the splitting has a strong temperature dependence, with the doublet structure most prominent between 50~K and 100~K, and the weight of one of the components strongly decreases on cooling. We suggest a static or dynamic deviation of Pr$^{3+}$ from the position in the ideal crystal structure can be the origin of the effect, with the deviation strongly decreasing at low temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا