ترغب بنشر مسار تعليمي؟ اضغط هنا

BERT-Based Sentiment Analysis: A Software Engineering Perspective

72   0   0.0 ( 0 )
 نشر من قبل Narinder Singh Punn
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sentiment analysis can provide a suitable lead for the tools used in software engineering along with the API recommendation systems and relevant libraries to be used. In this context, the existing tools like SentiCR, SentiStrength-SE, etc. exhibited low f1-scores that completely defeats the purpose of deployment of such strategies, thereby there is enough scope for performance improvement. Recent advancements show that transformer based pre-trained models (e.g., BERT, RoBERTa, ALBERT, etc.) have displayed better results in the text classification task. Following this context, the present research explores different BERT-based models to analyze the sentences in GitHub comments, Jira comments, and Stack Overflow posts. The paper presents three different strategies to analyse BERT based model for sentiment analysis, where in the first strategy the BERT based pre-trained models are fine-tuned; in the second strategy an ensemble model is developed from BERT variants, and in the third strategy a compressed model (Distil BERT) is used. The experimental results show that the BERT based ensemble approach and the compressed BERT model attain improvements by 6-12% over prevailing tools for the F1 measure on all three datasets.



قيم البحث

اقرأ أيضاً

88 - Hu Xu , Lei Shu , Philip S. Yu 2020
This paper analyzes the pre-trained hidden representations learned from reviews on BERT for tasks in aspect-based sentiment analysis (ABSA). Our work is motivated by the recent progress in BERT-based language models for ABSA. However, it is not clear how the general proxy task of (masked) language model trained on unlabeled corpus without annotations of aspects or opinions can provide important features for downstream tasks in ABSA. By leveraging the annotated datasets in ABSA, we investigate both the attentions and the learned representations of BERT pre-trained on reviews. We found that BERT uses very few self-attention heads to encode context words (such as prepositions or pronouns that indicating an aspect) and opinion words for an aspect. Most features in the representation of an aspect are dedicated to the fine-grained semantics of the domain (or product category) and the aspect itself, instead of carrying summarized opinions from its context. We hope this investigation can help future research in improving self-supervised learning, unsupervised learning and fine-tuning for ABSA. The pre-trained model and code can be found at https://github.com/howardhsu/BERT-for-RRC-ABSA.
222 - Ian Sommerville 2012
This short papers discusses the issues of teaching cloud computing from a software engineering rather than a business perspective. It discusses what topics might be covered in a senior course on cloud software engineering.
AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image- and speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, ther e is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state of the art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.
Federated learning is an emerging machine learning paradigm where clients train models locally and formulate a global model based on the local model updates. To identify the state-of-the-art in federated learning and explore how to develop federated learning systems, we perform a systematic literature review from a software engineering perspective, based on 231 primary studies. Our data synthesis covers the lifecycle of federated learning system development that includes background understanding, requirement analysis, architecture design, implementation, and evaluation. We highlight and summarise the findings from the results, and identify future trends to encourage researchers to advance their current work.
Recent neural-based aspect-based sentiment analysis approaches, though achieving promising improvement on benchmark datasets, have reported suffering from poor robustness when encountering confounder such as non-target aspects. In this paper, we take a causal view to addressing this issue. We propose a simple yet effective method, namely, Sentiment Adjustment (SENTA), by applying a backdoor adjustment to disentangle those confounding factors. Experimental results on the Aspect Robustness Test Set (ARTS) dataset demonstrate that our approach improves the performance while maintaining accuracy in the original test set.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا