ﻻ يوجد ملخص باللغة العربية
As an extension of previous ungraded work, we define a graded $p$-polar ring to be an analog of a graded commutative ring where multiplication is only allowed on $p$-tuples (instead of pairs) of elements of equal degree. We show that the free affine $p$-adic group scheme functor, as well as the free formal group functor, defined on $k$-algebras for a perfect field $k$ of characteristic $p$, factors through $p$-polar $k$-algebras. It follows that the same is true for any affine $p$-adic or formal group functor, in particular for the functor of $p$-typical Witt vectors. As an application, we show that the latter is free on the $p$-polar affine line.
We show that the functor of $p$-typical co-Witt vectors on commutative algebras over a perfect field $k$ of characteristic $p$ is defined on, and in fact only depends on, a weaker structure than that of a $k$-algebra. We call this structure a $p$-pol
In their work on differential operators in positive characteristic, Smith and Van den Bergh define and study the derived functors of differential operators; they arise naturally as obstructions to differential operators reducing to positive character
In this paper, we will consider derived equivalences for differential graded endomorphism algebras by Kellers approaches. First we construct derived equivalences of differential graded algebras which are endomorphism algebras of the objects from a tr
Let $A$ be the quotient of a graded polynomial ring $mathbb{Z}[x_1,cdots,x_m]otimesLambda[y_1,cdots,y_n]$ by an ideal generated by monomials with leading coefficients 1. Then we constructed a space~$X_A$ such that $A$ is isomorphic to $H^*(X_A)$ modulo torsion elements.
We systematically develop a theory of stratification in the context of tensor triangular geometry and apply it to classify the localizing tensor-ideals of certain categories of spectral $G$-Mackey functors for all finite groups $G$. Our theory of str