ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum-Optical Spectrometry in Relativistic Laser-Plasma Interactions Using the High-Harmonic Generation Process: A Proposal

126   0   0.0 ( 0 )
 نشر من قبل Emilio Pisanty
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum-optical spectrometry is a recently developed shot-to-shot photon correlation-based method, namely using a quantum spectrometer (QS), that has been used to reveal the quantum optical nature of intense laser-matter interactions and connect the research domains of quantum optics (QO) and strong laser-field physics (SLFP). The method provides the probability of absorbing photons from a driving laser field towards the generation of a strong laser-field interaction product, such as high-order harmonics. In this case, the harmonic spectrum is reflected in the photon number distribution of the infrared (IR) driving field after its interaction with the high harmonic generation medium. The method was implemented in non-relativistic interactions using high harmonics produced by the interaction of strong laser pulses with atoms and semiconductors. Very recently, it was used for the generation of non-classical light states in intense laser-atom interaction, building the basis for studies of quantum electrodynamics in strong laser-field physics and the development of a new class of non-classical light sources for applications in quantum technology. Here, after a brief introduction of the QS method, we will discuss how the QS can be applied in relativistic laser-plasma interactions and become the driving factor for initiating investigations on relativistic quantum electrodynamics.



قيم البحث

اقرأ أيضاً

125 - C. Rodel , E. Eckner , J. Bierbach 2014
We report the enhancement of individual harmonics generated at a relativistic ultra-steep plasma vacuum interface. Simulations show the harmonic emission to be due to the coupled action of two high velocity oscillations -- at the fundamental $omega_L $ and at the plasma frequency $omega_P$ of the bulk plasma. The synthesis of the enhanced harmonics can be described by the reflection of the incident laser pulse at a relativistic mirror oscillating at $omega_L$ and $omega_P$.
In this work we numerically study a self-guiding process in which ionization plays a dominant role and analyze its effect on high-order harmonic generation (HHG) in gases. Although this type of self-guiding --- termed as plasma-core induced self-guid ing in previous works --- limits the achievable cut-off by regulating the intensity of the laser beam, it provides favorable conditions for phase matching, which is indispensable for high-flux gas high-harmonic sources. To underline the role of self-guiding in efficient HHG, we investigate the time-dependent phase matching conditions in the guided beam and show how the spatio-temporally constant fundamental intensity contributes to the constructive build-up of the harmonic field in a broad photon-energy range up to the provided cut-off.
High-harmonic generation is one of the most fundamental processes in strong laser-field physics that has led to countless achievements in atomic physics and beyond. However, a rigorous quantum electrodynamical picture of the process has never been re ported. Here, we prove rigorously and demonstrate experimentally that the quantum state of the driving laser field, as well as that of harmonics, is coherent. Projecting this state on its part corresponding to harmonic generation, it becomes a superposition of a state, amplitude-shifted due to the quantum nature of light, and the initial state of the laser. This superposition interpolates between a Schr{o}dinger kitten, and a genuine Schr{o}dinger cat state. This work opens new paths for ground-breaking investigations in strong laser-field physics and quantum technology. We dedicate the work to the memory of Roy J. Glauber, the inventor of coherent states.
215 - J. P. Huang , Y. C. Jian , 2006
On the basis of the Edward-Kornfeld formulation, we study the effective susceptibility of secondharmonic generation (SHG) in colloidal crystals, which are made of graded metallodielectric nanoparticles with an intrinsic SHG susceptibility suspended i n a host liquid. We find a large enhancement and redshift of SHG responses, which arises from the periodic structure, local field effects and gradation in the metallic cores. The optimization of the Ewald-Kornfeld formulation is also investigated.
A customized finite-difference field solver for the particle-in-cell (PIC) algorithm that provides higher fidelity for wave-particle interactions in intense electromagnetic waves is presented. In many problems of interest, particles with relativistic energies interact with intense electromagnetic fields that have phase velocities near the speed of light. Numerical errors can arise due to (1) dispersion errors in the phase velocity of the wave, (2) the staggering in time between the electric and magnetic fields and between particle velocity and position and (3) errors in the time derivative in the momentum advance. Errors of the first two kinds are analyzed in detail. It is shown that by using field solvers with different $mathbf{k}$-space operators in Faradays and Amperes law, the dispersion errors and magnetic field time-staggering errors in the particle pusher can be simultaneously removed for electromagnetic waves moving primarily in a specific direction. The new algorithm was implemented into OSIRIS by using customized higher-order finite-difference operators. Schemes using the proposed solver in combination with different particle pushers are compared through PIC simulation. It is shown that the use of the new algorithm, together with an analytic particle pusher (assuming constant fields over a time step), can lead to accurate modeling of the motion of a single electron in an intense laser field with normalized vector potentials, $eA/mc^2$, exceeding $10^4$ for typical cell sizes and time steps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا