ﻻ يوجد ملخص باللغة العربية
We investigate flux-grown Sm-deficient Sm$_x$B$_6$ ($x < 1$) by global and local tools, including X-ray diffraction (XRD), electronic transport, and scanning tunneling microscopy (STM) and spectroscopy (STS). All these tools indicate a remarkable persistence of the SmB$_6$ local structure in the flux-grown samples even for nominal Sm concentrations as low as $x=0.75$. As a consequence, the overall electronic properties of Sm$_x$B$_6$, and particularly the surface conductance at low temperature, is only affected locally by the Sm-deficiency.
Possible existence of topologically protected surface in samarium hexaboride has created a strong need for investigations allowing to distinguish between properties coming from the surface states and those originating in the (remaining) bulk. Studies
We show that the resistivity plateau of SmB$_6$ at low temperature, typically taken as a hallmark of its conducting surface state, can systematically be influenced by different surface treatments. We investigate the effect of inflicting an increasing
We present results of Scanning Tunneling Microscopy and Spectroscopy (STS) measurements on the Kondo insulator SmB$_6$. The vast majority of surface areas investigated was reconstructed but, infrequently, also patches of varying size of non-reconstru
Recent quantum oscillation experiments on SmB$_6$ pose a paradox, for while the angular dependence of the oscillation frequencies suggest a 3D bulk Fermi surface, SmB$_6$ remains robustly insulating to very high magnetic fields. Moreover, a sudden lo
Topological insulators give rise to exquisite electronic properties due to their spin-momentum locked Dirac-cone-like band structure. Recently, it has been suggested that the required opposite parities between valence and conduction band along with s