ﻻ يوجد ملخص باللغة العربية
Porous polymeric covalent organic frameworks (COFs) have been under intense synthetic investigation with over 100 unique structural motifs known. In order to realize the true potential of these materials, converting the powders into thin films with strict control of thickness and morphology is necessary and accomplished through techniques including interfacial synthesis, chemical exfoliation and mechanical delamination. Recent progress in the construction and tailored properties of thin film COFs are highlighted in this review, addressing mechanical properties as well as application-focused properties in filtration, electronics, sensors, electrochemical, magnetics, optoelectronics and beyond. Additionally, heterogeneous integration of these thin films with other inorganic and organic materials is discussed, revealing exciting opportunities to integrate COF thin films with other state of the art material and device systems.
Achieving large-area uniform two-dimensional (2D) metal-organic frameworks (MOFs) and controlling their electronic properties on inert surfaces is a big step towards future applications in electronic devices. Here we successfully fabricated a 2D mono
We studied the structural and magnetic properties of FeC~thin films deposited by co-sputtering of Fe and C targets in a direct current magnetron sputtering (dcMS) process at a substrate temperature (Ts) of 300, 523 and 773,K. The structure and morpho
This paper reports the synthesis and detailed characterization of graphite thin films produced by thermal decomposition of the (0001) face of a 6H-SiC wafer, demonstrating the successful growth of single crystalline films down to approximately one gr
The electronic wavefunctions of an atom or molecule are affected by its interactions with its environment. These interactions dictate electronic and optical processes at interfaces, and is especially relevant in the case of thin film optoelectronic d
Determining the electronic properties of nanoscopic, low-dimensional materials free of external influences is key to discovery and understanding of new physical phenomena. An example is the suspension of graphene, which has allowed access to their in