ﻻ يوجد ملخص باللغة العربية
The recently proposed RCube network is a cube-based server-centric data center network (DCN), including two types of heterogeneous servers, called core and edge servers. Remarkably, it takes the latter as backup servers to deal with server failures and thus achieve high availability. This paper first points out that RCube is suitable as a candidate topology of DCNs for edge computing. Three transmission types are among core and edge servers based on the demand for applications computation and instant response. We then employ protection routing to analyze the transmission failure of RCube DCNs. Unlike traditional protection routing, which only tolerates a single link or node failure, we use the multi-protection routing scheme to improve fault-tolerance capability. To configure a protection routing in a network, according to Tapolcais suggestion, we need to construct two completely independent spanning trees (CISTs). A logic graph of RCube, denoted by $L$-$RCube(n,m,k)$, is a network with a recursive structure. Each basic building element consists of $n$ core servers and $m$ edge servers, where the order $k$ is the number of recursions applied in the structure. In this paper, we provide algorithms to construct $min{n,lfloor(n+m)/2rfloor}$ CISTs in $L$-$RCube(n,m,k)$ for $n+mgeqslant 4$ and $n>1$. From a combination of the multiple CISTs, we can configure the desired multi-protection routing. In our simulation, we configure up to 10 protection routings for RCube DCNs. As far as we know, in past research, there were at most three protection routings developed in other network structures. Finally, we summarize some crucial analysis viewpoints about the transmission efficiency of DCNs with heterogeneous edge-core servers from the simulation results.
Mobile devices with embedded sensors for data collection and environmental sensing create a basis for a cost-effective approach for data trading. For example, these data can be related to pollution and gas emissions, which can be used to check the co
System noise can negatively impact the performance of HPC systems, and the interconnection network is one of the main factors contributing to this problem. To mitigate this effect, adaptive routing sends packets on non-minimal paths if they are less
The server-centric data centre network architecture can accommodate a wide variety of network topologies. Newly proposed topologies in this arena often require several rounds of analysis and experimentation in order that they might achieve their full
In this paper, we propose the first optimum process scheduling algorithm for an increasingly prevalent type of heterogeneous multicore (HEMC) system that combines high-performance big cores and energy-efficient small cores with the same instruction-s
Distributed digital infrastructures for computation and analytics are now evolving towards an interconnected ecosystem allowing complex applications to be executed from IoT Edge devices to the HPC Cloud (aka the Computing Continuum, the Digital Conti