ترغب بنشر مسار تعليمي؟ اضغط هنا

Groupoid Semidirect Product Fell Bundles II- Principal Actions and Stabilization

155   0   0.0 ( 0 )
 نشر من قبل Lucas Hall
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a free and proper action of a groupoid on a Fell bundle (over another groupoid), we give an equivalence between the semidirect-product and the generalized-fixed-point Fell bundles, generalizing an earlier result where the action was by a group. As an application, we show that the Stabilization Theorem for Fell bundles over groupoids is essentially another form of crossed-product duality.



قيم البحث

اقرأ أيضاً

Given an action of a groupoid by isomorphisms on a Fell bundle (over another groupoid), we form a semidirect-product Fell bundle, and prove that its $C^{*}$-algebra is isomorphic to a crossed product.
We propose a definition of involutive categorical bundle (Fell bundle) enriched in an involutive monoidal category and we argue that such a structure is a possible suitable environment for the formalization of different equivale
Renault proved in 2008 that if $G$ is a topologically principal groupoid, then $C_0(G^{(0)})$ is a Cartan subalgebra in $C^*_r(G, Sigma)$ for any twist $Sigma$ over $G$. However, there are many groupoids which are not topologically principal, yet the ir (twisted) $C^*$-algebras admit Cartan subalgebras. This paper gives a dynamical description of a class of such Cartan subalgebras, by identifying conditions on a 2-cocycle $c$ on $G$ and a subgroupoid $S subseteq G$ under which $C^*_r(S, c)$ is Cartan in $C^*_r(G, c)$. When $G$ is a discrete group, we also describe the Weyl groupoid and twist associated to these Cartan pairs, under mild additional hypotheses.
From a suitable groupoid G, we show how to construct an amenable principal groupoid whose C*-algebra is a Kirchberg algebra which is KK-equivalent to C*(G). Using this construction, we show by example that many UCT Kirchberg algebras can be realised as the C*-algebras of amenable principal groupoids.
We present a derivation-based Atiyah sequence for noncommutative principal bundles. Along the way we treat the problem of deciding when a given *-automorphism on the quantum base space lifts to a *-automorphism on the quantum total space that commutes with the underlying structure group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا