ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuna: A Static Analysis Approach to Optimizing Deep Neural Networks

123   0   0.0 ( 0 )
 نشر من قبل Yao Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce Tuna, a static analysis approach to optimizing deep neural network programs. The optimization of tensor operations such as convolutions and matrix multiplications is the key to improving the performance of deep neural networks. Many deep learning model optimization mechanisms today use dynamic analysis, which relies on experimental execution on a target device to build a data-driven cost model of the program. The reliance on dynamic profiling not only requires access to target hardware at compilation time but also incurs significant cost in machine resources. We introduce an approach that profiles the program by constructing features based on the target hardware characteristics in order. We use static analysis of the relative performance of tensor operations to optimize the deep learning program. Experiments show that our approach can achieve up to 11x performance compared to dynamic profiling based methods with the same compilation time.



قيم البحث

اقرأ أيضاً

We propose a novel Bayesian neural network architecture that can learn invariances from data alone by inferring a posterior distribution over different weight-sharing schemes. We show that our model outperforms other non-invariant architectures, when trained on datasets that contain specific invariances. The same holds true when no data augmentation is performed.
In this paper we establish a connection between non-convex optimization methods for training deep neural networks and nonlinear partial differential equations (PDEs). Relaxation techniques arising in statistical physics which have already been used s uccessfully in this context are reinterpreted as solutions of a viscous Hamilton-Jacobi PDE. Using a stochastic control interpretation allows we prove that the modified algorithm performs better in expectation that stochastic gradient descent. Well-known PDE regularity results allow us to analyze the geometry of the relaxed energy landscape, confirming empirical evidence. The PDE is derived from a stochastic homogenization problem, which arises in the implementation of the algorithm. The algorithms scale well in practice and can effectively tackle the high dimensionality of modern neural networks.
Neural personalized recommendation is the corner-stone of a wide collection of cloud services and products, constituting significant compute demand of the cloud infrastructure. Thus, improving the execution efficiency of neural recommendation directl y translates into infrastructure capacity saving. In this paper, we devise a novel end-to-end modeling infrastructure, DeepRecInfra, that adopts an algorithm and system co-design methodology to custom-design systems for recommendation use cases. Leveraging the insights from the recommendation characterization, a new dynamic scheduler, DeepRecSched, is proposed to maximize latency-bounded throughput by taking into account characteristics of inference query size and arrival patterns, recommendation model architectures, and underlying hardware systems. By doing so, system throughput is doubled across the eight industry-representative recommendation models. Finally, design, deployment, and evaluation in at-scale production datacenter shows over 30% latency reduction across a wide variety of recommendation models running on hundreds of machines.
With the increasing popularity of deep learning, Convolutional Neural Networks (CNNs) have been widely applied in various domains, such as image classification and object detection, and achieve stunning success in terms of their high accuracy over th e traditional statistical methods. To exploit the potential of CNN models, a huge amount of research and industry efforts have been devoted to optimizing CNNs. Among these endeavors, CNN architecture design has attracted tremendous attention because of its great potential of improving model accuracy or reducing model complexity. However, existing work either introduces repeated training overhead in the search process or lacks an interpretable metric to guide the design. To clear these hurdles, we propose 3D-Receptive Field (3DRF), an explainable and easy-to-compute metric, to estimate the quality of a CNN architecture and guide the search process of designs. To validate the effectiveness of 3DRF, we build a static optimizer to improve the CNN architectures at both the stage level and the kernel level. Our optimizer not only provides a clear and reproducible procedure but also mitigates unnecessary training efforts in the architecture search process. Extensive experiments and studies show that the models generated by our optimizer can achieve up to 5.47% accuracy improvement and up to 65.38% parameters deduction, compared with state-of-the-art CNN structures like MobileNet and ResNet.
Edge computing offers an additional layer of compute infrastructure closer to the data source before raw data from privacy-sensitive and performance-critical applications is transferred to a cloud data center. Deep Neural Networks (DNNs) are one clas s of applications that are reported to benefit from collaboratively computing between the edge and the cloud. A DNN is partitioned such that specific layers of the DNN are deployed onto the edge and the cloud to meet performance and privacy objectives. However, there is limited understanding of: (a) whether and how evolving operational conditions (increased CPU and memory utilization at the edge or reduced data transfer rates between the edge and the cloud) affect the performance of already deployed DNNs, and (b) whether a new partition configuration is required to maximize performance. A DNN that adapts to changing operational conditions is referred to as an adaptive DNN. This paper investigates whether there is a case for adaptive DNNs in edge computing by considering three questions: (i) Are DNNs sensitive to operational conditions? (ii) How sensitive are DNNs to operational conditions? (iii) Do individual or a combination of operational conditions equally affect DNNs? (iv) Is DNN partitioning sensitive to hardware architectures on the cloud/edge? The exploration is carried out in the context of 8 pre-trained DNN models and the results presented are from analyzing nearly 8 million data points. The results highlight that network conditions affects DNN performance more than CPU or memory related operational conditions. Repartitioning is noted to provide a performance gain in a number of cases, but a specific trend was not noted in relation to its correlation to the underlying hardware architecture. Nonetheless, the need for adaptive DNNs is confirmed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا