ترغب بنشر مسار تعليمي؟ اضغط هنا

DADgraph: A Discourse-aware Dialogue Graph Neural Network for Multiparty Dialogue Machine Reading Comprehension

123   0   0.0 ( 0 )
 نشر من قبل Jiaqi Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiparty Dialogue Machine Reading Comprehension (MRC) differs from traditional MRC as models must handle the complex dialogue discourse structure, previously unconsidered in traditional MRC. To fully exploit such discourse structure in multiparty dialogue, we present a discourse-aware dialogue graph neural network, DADgraph, which explicitly constructs the dialogue graph using discourse dependency links and discourse relations. To validate our model, we perform experiments on the Molweni corpus, a large-scale MRC dataset built over multiparty dialogue annotated with discourse structure. Experiments on Molweni show that our discourse-aware model achieves statistically significant improvements compared against strong neural network MRC baselines.



قيم البحث

اقرأ أيضاً

Meeting summarization is a challenging task due to its dynamic interaction nature among multiple speakers and lack of sufficient training data. Existing methods view the meeting as a linear sequence of utterances while ignoring the diverse relations between each utterance. Besides, the limited labeled data further hinders the ability of data-hungry neural models. In this paper, we try to mitigate the above challenges by introducing dialogue-discourse relations. First, we present a Dialogue Discourse-Dware Meeting Summarizer (DDAMS) to explicitly model the interaction between utterances in a meeting by modeling different discourse relations. The core module is a relational graph encoder, where the utterances and discourse relations are modeled in a graph interaction manner. Moreover, we devise a Dialogue Discourse-Aware Data Augmentation (DDADA) strategy to construct a pseudo-summarization corpus from existing input meetings, which is 20 times larger than the original dataset and can be used to pretrain DDAMS. Experimental results on AMI and ICSI meeting datasets show that our full system can achieve SOTA performance. Our codes will be available at: https://github.com/xcfcode/DDAMS.
Document interpretation and dialog understanding are the two major challenges for conversational machine reading. In this work, we propose Discern, a discourse-aware entailment reasoning network to strengthen the connection and enhance the understand ing for both document and dialog. Specifically, we split the document into clause-like elementary discourse units (EDU) using a pre-trained discourse segmentation model, and we train our model in a weakly-supervised manner to predict whether each EDU is entailed by the user feedback in a conversation. Based on the learned EDU and entailment representations, we either reply to the user our final decision yes/no/irrelevant of the initial question, or generate a follow-up question to inquiry more information. Our experiments on the ShARC benchmark (blind, held-out test set) show that Discern achieves state-of-the-art results of 78.3% macro-averaged accuracy on decision making and 64.0 BLEU1 on follow-up question generation. Code and models are released at https://github.com/Yifan-Gao/Discern.
Multi-hop machine reading comprehension is a challenging task in natural language processing, which requires more reasoning ability and explainability. Spectral models based on graph convolutional networks grant the inferring abilities and lead to co mpetitive results, however, part of them still face the challenge of analyzing the reasoning in a human-understandable way. Inspired by the concept of the Grandmother Cells in cognitive neuroscience, a spatial graph attention framework named crname, imitating the procedure was proposed. This model is designed to assemble the semantic features in multi-angle representations and automatically concentrate or alleviate the information for reasoning. The name crname is a metaphor for the pattern of the model: regard the subjects of queries as the start points of clues, take the reasoning entities as bridge points, and consider the latent candidate entities as the grandmother cells, and the clues end up in candidate entities. The proposed model allows us to visualize the reasoning graph and analyze the importance of edges connecting two entities and the selectivity in the mention and candidate nodes, which can be easier to be comprehended empirically. The official evaluations in open-domain multi-hop reading dataset WikiHop and Drug-drug Interactions dataset MedHop prove the validity of our approach and show the probability of the application of the model in the molecular biology domain.
Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic sc enario, the retrieved background knowledge would be noisy, which results in severe challenges in the information transmission. Existing studies commonly train independent or pipeline systems for the two subtasks. However, those methods are trivial by using hard-label decisions to activate question generation, which eventually hinders the model performance. In this work, we propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation to provide a richer dialogue state reference. Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.
Multi-choice Machine Reading Comprehension (MRC) as a challenge requires model to select the most appropriate answer from a set of candidates given passage and question. Most of the existing researches focus on the modeling of the task datasets witho ut explicitly referring to external fine-grained knowledge sources, which is supposed to greatly make up the deficiency of the given passage. Thus we propose a novel reference-based knowledge enhancement model called Reference Knowledgeable Network (RekNet), which refines critical information from the passage and quote explicit knowledge in necessity. In detail, RekNet refines fine-grained critical information and defines it as Reference Span, then quotes explicit knowledge quadruples by the co-occurrence information of Reference Span and candidates. The proposed RekNet is evaluated on three multi-choice MRC benchmarks: RACE, DREAM and Cosmos QA, which shows consistent and remarkable performance improvement with observable statistical significance level over strong baselines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا